bzoj 1004: [HNOI2008]Cards(置换)

19 篇文章 0 订阅

1004: [HNOI2008]Cards

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2800   Solved: 1672
[ Submit][ Status][ Discuss]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

[ Submit][ Status][ Discuss]


题解:burnside 引理

定理(Burnside引理):设G={a1,a2,,ag}[1,n]上的置换群。
把每个置换都写成不相交的循环的乘积c1(ak)是在置换ak的作用下不动点的个数。
[1,n]在G的作用下被分成一些等价类。
则不同的等价类的个数L为:(这里等价类的数量求是就是把一个1-n的序列,划分成了几个不相交的部分,例如1,2,3,4,5  ,加上有两个循环(1,3,5)(2,4),那么l的数量就是2.)

L=1/|G| [c1(a1)+...+cg(ag)] =1/|g| [c1(a1)+..+cg(ag)]

用更通俗的话来说Burnside定理:有m个置换k种颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数。

如果要不管怎么置换得到的数列都是他本身的话,那么每个循环节中点的颜色都必须相同。

那么我们可以做一个三维的背包,来计算所以满足每个循环节中点的颜色相同,并且序列中红色sr个,蓝色sb个,绿色sg个。

注意在计算每种置换的方案数的时候还需要再加上一个(1... n)即等于原序列的置换。

因为题目中说每个多个置换置换后的结果都可以通过一个置换实现,所以我们自然可以对于每个置换分别求解,然后累加。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 103
#define LL long long
using namespace std;
int n,m,c1,c2,c3;
int len[N],a[N],use[N];
LL  f[N][N][N],ans,p;
LL quickpow(LL num,LL x)
{
	LL base=num; LL ans1=1;
	while (x)
	{
		if (x&1)  ans1=ans1*base%p;
		x>>=1;
		base=base*base%p;
	}
	return ans1%p;
}
LL dp()
{
	memset(use,0,sizeof(use));
	memset(f,0,sizeof(f));
	memset(len,0,sizeof(len));
	int num=0;
	for (int i=1;i<=n;i++)
	 if (!use[i]){
	 	num++;  int j=i;
	 	while (!use[j]){
	 		len[num]++; use[j]=1;
	 		j=a[j];
	 	}
	 }
	f[0][0][0]=1;
	for (int i=1;i<=num;i++)
	 for (int j=c1;j>=0;j--)
	  for (int k=c2;k>=0;k--)
	   for (int l=c3;l>=0;l--)
	    {
	       if (j-len[i]>=0)  f[j][k][l]+=f[j-len[i]][k][l]%p;
	       if (k-len[i]>=0)  f[j][k][l]+=f[j][k-len[i]][l]%p;
	       if (l-len[i]>=0)  f[j][k][l]+=f[j][k][l-len[i]]%p;
	    }
	return f[c1][c2][c3];
}
int main()
{
	scanf("%d%d%d%d%lld",&c1,&c2,&c3,&m,&p);
	n=c1+c2+c3;
	for (int i=1;i<=n;i++) a[i]=i;
	ans+=dp(); 
	for (int i=1;i<=m;i++) {
		for (int j=1;j<=n;j++) scanf("%d",&a[j]);
		ans=(ans+dp())%p;
	} 
	LL t=quickpow(m+1,p-2); 
    printf("%lld\n",(ans*t)%p);
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值