code vs 4560 NOIP2015 D2T2 子串 (dp)

本文针对NOIP2015第二天第二题“子串”进行解答,介绍了一种时间复杂度为O(m^3*n)的暴力DP解法及其优化方案。最终提供了一种更为高效的DP解法,通过枚举和状态转移实现了对问题的有效求解。

4560 NOIP2015 D2T2 子串

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
题目描述 Description

有两个仅包含小写英文字母的字符串A和B。现在要从字符串A中取出k个互不重叠的非空子串,然后把这k个子串按照其在字符串A中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这个新串与字符串B相等?注意:子串取出的位置不同也认为是不同的方案。

输入描述 Input Description

第一行是三个正整数n,m,k,分别表示字符串A的长度,字符串B的长度,以及问题描述中所提到的k,每两个整数之间用一个空格隔开。 

第二行包含一个长度为n的字符串,表示字符串A。 第三行包含一个长度为m的字符串,表示字符串B。


输出描述 Output Description

输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对1,000,000,007取模的结果。

样例输入 Sample Input

【Input1】

6 3 1 

aabaab 

aab

【Input2】

6 3 2 

aabaab 

aab

【Input3】

6 3 3 

aabaab 

aab


样例输出 Sample Output

【Output1】

2

【Output2】

7

【Output3】

7

数据范围及提示 Data Size & Hint

对于第1组数据:1≤n≤500,1≤m≤50,k=1; 

对于第2组至第3组数据:1≤n≤500,1≤m≤50,k=2; 

对于第4组至第5组数据:1≤n≤500,1≤m≤50,k=m; 

对于第1组至第7组数据:1≤n≤500,1≤m≤50,1≤k≤m; 

对于第1组至第9组数据:1≤n≤1000,1≤m≤100,1≤k≤m; 

对于所有10组数据:1≤n≤1000,1≤m≤200,1≤k≤m。



题解: 字符串dp
刚开始写了一个比较暴力的dp,最坏情况下时间复杂度是O(m^3*n)
f[k][i][j] 表示取第k个子串,用s1的前i个字符匹配,到s2的第j个字符。
为什么这么表示,是因为s2的是一定都要匹配上的,但是s1中的不用。
预处理一个数组pd[i][j]表示s1[i],s2[j]开始向前匹配最多匹配的个数。
f[k][i][j]+=f[k][i-1][j]
for (int l=1;l<=pd[i][j];l++)
 f[k][i][j]+=f[k-1][i-l][j-l]
这个dp的正确性十分显然。然而只能过80分。。。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 1003
#define M 203
#define p 1000000007
using namespace std;
int f[3][N][M],pd[N][M];
int n,m,k;
char s[N],s1[N];
void clear(int x)
{
	for (int i=0;i<=n;i++)
	 for (int j=0;j<=m;j++)
	  f[x][i][j]=0;
}
int main()
{
	freopen("a.in","r",stdin);
	scanf("%d%d%d",&n,&m,&k);
	scanf("%s",s+1);
	scanf("%s",s1+1);
	for (int i=1;i<=n;i++)
	 for (int j=1;j<=m;j++)
	  {
	  	int l=i; int r=j; int t=0;
	  	while (s[l]==s1[r]&&l>0&&r>0) l--,r--,t++;
	  	pd[i][j]=t;
      }
    //for (int i=1;i<=n;i++)
    // for (int j=1;j<=n;j++)
      //cout<<i<<" "<<j<<" "<<pd[i][j]<<endl;
    for (int i=0;i<=n;i++)
     f[0][i][0]=1;
	for (int t=1;t<=k;t++)
	{
	 int x=t%2;
	 clear(x);
	 for (int i=1;i<=n;i++)
	 {
	  int last=min(m,i);
	  for (int j=1;j<=last;j++)
	  {
       f[x][i][j]=(f[x][i][j]+f[x][i-1][j])%p;
	   for (int l=1;l<=pd[i][j];l++)
	     f[x][i][j]=(f[x][i][j]+f[(t-1)%2][i-l][j-l])%p;
	  }
     }
    }
	int ans=f[k%2][n][m];
	//for (int i=1;i<=n;i++)
	// ans=(ans+f[k%2][i][m])%p;
	printf("%d\n",ans);
}

说了半天,还是说说正解吧。
枚举s1中的每一位t
f[1][i][j] 表示匹配到s2的第i位,选用了j个子串,且t一定入选。
f[0][i][j] 表示匹配到s2的第i位,选用了j个子串,t不一定入选(可选可不选,也就是总答案)
我们分情况讨论
s1[t]==s2[i]
f[1][i][j]=f[0][i-1][j-1]+f[1][i-1][j] 当前位单独成为一个子串,或与上一位合并。
f[0][i][j]=f[0][i][j]+f[1][i][j]
s1[t]!=s2[i]
f[1][i][j]=0
咦,貌似少了s1所在的那一维,这样真的可以推吗?
我们向01背包一样s2倒叙枚举,s1正序枚举,这样每次直接在上一次的结果上覆盖,并且保证s1中的每个点不会重复利用。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 1003
#define M 203
#define p 1000000007
using namespace std;
int f[3][N][M],pd[N][M],sum[3][N][M];
int n,m,k;
char s[N],s1[N];
void clear(int x)
{
	for (int i=0;i<=n;i++)
	 for (int j=0;j<=m;j++)
	  f[x][i][j]=0,sum[x][i][j]=0;
}
int main()
{
	freopen("a.in","r",stdin);
	scanf("%d%d%d",&n,&m,&k);
	scanf("%s",s+1);
	scanf("%s",s1+1);
	for (int i=1;i<=n;i++)
	 for (int j=1;j<=m;j++)
	  {
	  	int l=i; int r=j; int t=0;
	  	while (s[l]==s1[r]&&l>0&&r>0) l--,r--,t++;
	  	pd[i][j]=t;
      }
    memset(f,0,sizeof(f));
    f[0][0][0]=1;
    for (int i=1;i<=n;i++)
     for (int j=m;j>=1;j--)
      {
      	 if (s[i]==s1[j]) 
      	 {
      	 	for (int t=1;t<=min(j,k);t++)
      	 	 f[1][j][t]=(f[0][j-1][t-1]+f[1][j-1][t])%p,
      	 	 f[0][j][t]=(f[0][j][t]+f[1][j][t])%p;
		 }
		 else for (int t=1;t<=min(j,k);t++)
		        f[1][j][t]=0;
	  }
	printf("%d\n",f[0][m][k]);
}






本项目聚焦于运用卷积神经网络技术进行人体姿态与动作的识别分析。核心程序模块包含四个组成部分:姿态检测模块、训练数据采集模块、模型训练模块以及主控程序模块。 在姿态检测模块中,构建了一个姿态识别类,该类整合了两种关键方法。第一种方法通过调用现成的骨骼点识别接口处理输入图像,获取人体关键节点信息并将识别结果存储在特定变量中;第二种方法则利用可视化工具包,将检测到的骨骼节点在图像中进行标注并建立连接关系。 训练数据采集模块实现了图像存储功能,该模块通过调用图像处理库的存储接口,将采集到的样本图像保存至本地存储设备,为后续模型训练阶段提供数据支持。 模型训练模块定义了完整的卷积神经网络训练流程。该模块首先调用数据采集模块保存的图像数据集,通过多层级卷积运算提取图像特征,采用反向传播算法优化网络参数,最终生成可用于动作分类的识别模型。整个训练过程包含数据预处理、网络结构配置、损失函数计算和参数优化等标准步骤。 项目采用模块化设计理念,各功能组件之间保持高度独立性,通过清晰的接口定义实现数据交互。技术实现方面,结合了深度学习框架与计算机视觉库,构建了从数据采集到模型训练的全流程解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值