COGS 2294. [HZOI 2015] 释迦 (FFT mod any prime)

22 篇文章 0 订阅
本文介绍了一种解决多项式乘积问题的方法,通过使用三次NTT(Number Theoretic Transform)和中国剩余定理来求解任意模数下的多项式乘积问题。文章详细解释了如何选择合适的模数进行计算,并提供了完整的代码实现。
摘要由CSDN通过智能技术生成

题目描述

传送门

题目大意:给两个次数界为n的多项式,求这两个多项式的乘积,输出前x的0次项到n-1次项的系数 mod 23333333

题解

NTT只能求在FFT模数下的值。对于任意模数的题来说,我们可以选择三个FFT模数分别做NTT,最后用中国剩余定理合并。
一次卷积后每个数可以达到 1023(nmod2) 左右,所以我们需要选择三个乘积大于 1023 的FFT模数。合并的时候 1023>264 ,所以我们不能直接用中国剩余定理,需要一点小技巧。

ansa1 (mod m1)

ansa2 (mod m2)

ansa3 (mod m3)

先用中国剩余定理合并 a1,a2 ,得到 ansA (mod M)
其中 A=a1m2m21+a2m1m11,M=m1m2
ans=kM+A=xm3+a3
kMa3A (mod m3)

k(a3A)M1 (mod m3)

求出k后带入 ans=kM+A ,然后最后ans对23333333取模即可。
中间做乘法的过程需要用到快速乘,否则会炸long long

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 500003
#define mod 23333333
#define LL long long 
using namespace std; 
LL M[10],f[4][N],g[4][N],ans[N];
int n,m,n1,L,R[N];
LL quickpow(LL num,LL x,LL p)
{
    LL base=num%p; LL ans=1;
    while (x) {
        if (x&1) ans=ans*base%p;
        x>>=1;
        base=base*base%p;
    }
    return ans;
}
void NTT(LL a[N],int n,int opt,LL p)
{
    for (int i=0;i<n;i++) 
     if (i>R[i]) swap(a[i],a[R[i]]);
    for (int i=1;i<n;i<<=1) {
        LL wn=quickpow(3,(p-1)/(i<<1),p);
        for (int p1=i<<1,j=0;j<n;j+=p1){
            LL w=1;
            for (int k=0;k<i;k++,w=w*wn%p){
                LL x=a[j+k],y=w*a[j+k+i]%p;
                a[j+k]=(x+y)%p; a[j+k+i]=(x-y+p)%p;
            }
        }
    }
    if (opt==-1) reverse(a+1,a+n);
}
void solve(LL a[N],LL b[N],LL p)
{
//  for (int i=0;i<=n1;i++) a[i]%=p;
//  for (int i=0;i<=n1;i++) b[i]%=p;
    NTT(a,n1,1,p); NTT(b,n1,1,p);
    for (int i=0;i<n1;i++) a[i]=a[i]*b[i]%p;
    NTT(a,n1,-1,p);
    LL rev=quickpow(n1,p-2,p);
    for (int i=0;i<n1;i++) a[i]=a[i]*rev%p;
}
void exgcd(LL a,LL b,LL &x,LL &y)
{
    if (!b) {
        x=1; y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    LL t=y;
    y=x-(a/b)*y;
    x=t;
}
LL mul(LL num,LL x,LL p)
{
    LL ans=0; LL base=num%p;
    while (x) {
        if (x&1) ans=(ans+base)%p;
        x>>=1;
        base=(base+base)%p;
    }
    return ans;
}
LL china(LL a1,LL a2,LL a3)
{
    LL MM=M[1]*M[2];
    LL x,x1; x=quickpow(M[2],M[1]-2,M[1]); x1=quickpow(M[1],M[2]-2,M[2]);
    LL A=(mul(a1*M[2]%MM,x%MM,MM)+mul(a2*M[1]%MM,x1%MM,MM))%MM;
    LL k=(a3-A)%M[3]*quickpow(MM,M[3]-2,M[3])%M[3];
    k=(k%M[3]+M[3])%M[3];
    return ((k%mod)*(MM%mod)%mod+A)%mod;
}
int main()
{
    freopen("annona_squamosa.in","r",stdin);
    freopen("annona_squamosa.out","w",stdout);
    scanf("%d",&n);
    M[1]=998244353,M[2]=1004535809,M[3]=469762049;
    for (int i=0;i<n;i++) scanf("%lld",&f[1][i]),f[2][i]=f[3][i]=f[1][i];
    for (int i=0;i<n;i++) scanf("%lld",&g[1][i]),g[2][i]=g[3][i]=g[1][i];
    m=2*n;
    for (n1=1;n1<=m;n1<<=1) L++;
    for (int i=0;i<=n1;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    for (int i=1;i<=3;i++) 
     solve(f[i],g[i],M[i]);
    for (int i=0;i<n;i++) printf("%lld\n",china(f[1][i],f[2][i],f[3][i]));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值