实现CycleGAN对图片进行风格转换

实现CycleGAN对图片进行风格转换

参考官方源码:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

常见问题参考:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md

 

1、前提条件

(1)系统软件

  • Linux或macOS或Windows(亲测在windows上可以跑通,流程一样)
  • Python 3
  • CPU或NVIDIA GPU + CUDA CuDNN

 

(2)安装[PyTorch]0.4+(http://pytorch.org)和其他依赖项(例如,torchvision,visdomdominate)。

  • 对于pip用户,请键入命令:pip install -r requirements.txt
  • 对于Conda用户,提供了一个安装脚本./scripts/conda_deps.sh。或者可以创建一个新的Conda环境conda env create -f environment.yml。
  • 对于Docker用户,提供了预先构建的Docker image和Dockerfile。参考Docker页面。

 

(3)下载源码

git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix

 

2、实现CycleGAN训练/测试:

(1)下载CycleGAN数据集(例如地图maps):使用git bash工具。

bash ./datasets/download_cyclegan_dataset.sh maps

(2)打开visdom模型可视化工具,用于查看训练结果和损失图:单击URL http:// localhost:8097 进行查看。

python -m visdom.server

(3)训练模型:中间结果保存路径:./checkpoints/maps_cyclegan/web/index.html。

#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan

(4)测试模型:测试结果保存路径:./results/maps_cyclegan/latest_test/index.html。

#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan

 

3、使用CycleGAN训练/测试monet2photolittle:

(1)下载CycleGAN数据集中的monet2photo数据集进行修改:

trainA:500张图片,trainB:1500张图片,testA:50张图片,testB:150张图片,

(2)打开visdom模型可视化工具,用于查看训练结果和损失图:单击URL http:// localhost:8097 进行查看。

python -m visdom.server

(3)训练模型:中间结果保存路径:./checkpoints/monet2photolittle_cyclegan/web/index.html。

#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/monet2photolittle --name monet2photolittle_cyclegan --model cycle_gan

(4)测试模型:测试结果保存路径:./results/monet2photolittle_cyclegan/latest_test/index.html。

#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/monet2photolittle --name monet2photolittle_cyclegan --model cycle_gan

(5)部分训练测试结果:real_A:输入x,fake_B:生成G(x),rec_A:重建F(G(x))。

训练结果可视化

测试结果可视化

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值