问题背景:我们每天都会收到很多的邮件,想象一下,如果再某一天内,我们收到了几百封邮件,但是这几百封邮件中,自己需要处理的邮件只有寥寥的数十封。所以我们需要一个“筛选器”在众多邮件中,将垃圾邮件和正常邮件筛选出来,以便我们进行正常邮件的处理。
朴素贝叶斯算法对于垃圾邮件的分类具有较高的准确度。
贝叶斯公式简介和应用:http://t.csdn.cn/fAm15
主要思路:首先我们假设所有词语彼此之间是不相关的(严格说这个假设不成立;实际上各词语之间不可能完全没有相关性,但可以忽略)。然后要明确我们要计算的内容是:在某几个关键词下,该邮件是正常邮件的概率:P(正常邮件|关键词)和在某几个关键词下,该邮件是垃圾邮件的概率:P(垃圾邮件|关键词)。
基于贝叶斯公式和条件概率公式,我们可以把P(正常邮件|关键词)转化为:
将 P(垃圾邮件|关键词)转化为:
可以看到,二者的分母是一样的,但是分子不同,所以我们只要计算分子的大小即可。
存在的问题:例如当P1(中奖|正常)很小,P2(免费|正常)也很小,并且在正常条件下,其他的关键词的概率Pn(关键词|正常)的概率也很小的时候,就会导致P1*P2*...*Pn无限小,我们对上式的分子取以e为底的对数ln。经过处理之后,分子就变成了:
取对数存在的问题:经过这样的处理之后,仍存在一个问题就是例如“中奖”,没有在邮件中出现的时候,就会导致上述公式中的P(中奖|正常)和P(中奖|垃圾邮件)的结果为零,这是我们不想要的,因为这样的话不能筛选出垃圾邮件,所以为了处理这种特殊情况,我们引入了laplace smoothing-拉普拉斯平滑。
拉普拉斯平滑主要思想:主要的思想是对词的个数+1,对训练数据进行平滑处理。当训练样本很大时,每个词的个数+1造成的概率变化并不大,在误差允许的范围之内。
经过拉普拉斯平滑后的
将该公式代入相应位置即可。
具体代码如下:
import os
import re
import string
import math
#读入数据
DATA_DIR = 'enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
subfolders = ['enron%d' % i for i in range(1, 7)]
data = []
target = []
for subfolder in subfolders:
# spam
spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
for spam_file in spam_files:
with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
data.append(f.read())
target.append(1)
# ham
ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
for ham_file in ham_files:
with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
data.append(f.read())
target.append(0)
return data, target
X, y = get_data(DATA_DIR) # 读取数据
#数据的预处理
class SpamDetector_1(object):
#清除标点符号
def clean(self, s):
translator = str.maketrans("", "", string.punctuation)
return s.translate(translator)
#将字符串标记为单词
def tokenize(self, text):
text = self.clean(text).lower()
return re.split("\W+", text)
#计算某个单词出现的次数
def get_word_counts(self, words):
word_counts = {}
for word in words:
word_counts[word] = word_counts.get(word, 0.0) + 1.0
return word_counts
#数据的处理阶段
class SpamDetector_2(SpamDetector_1):
# X:data,Y:target标签(垃圾邮件或正常邮件)
def fit(self, X, Y):
self.num_messages = {}
self.log_class_priors = {}
self.word_counts = {}
# 建立一个集合存储所有出现的单词
self.vocab = set()
# 统计spam和ham邮件的个数
self.num_messages['spam'] = sum(1 for label in Y if label == 1)
self.num_messages['ham'] = sum(1 for label in Y if label == 0)
# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
self.log_class_priors['spam'] = math.log(
self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.log_class_priors['ham'] = math.log(
self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.word_counts['spam'] = {}
self.word_counts['ham'] = {}
for x, y in zip(X, Y):
c = 'spam' if y == 1 else 'ham'
# 构建一个字典存储单封邮件中的单词以及其个数
counts = self.get_word_counts(self.tokenize(x))
for word, count in counts.items():
if word not in self.vocab:
self.vocab.add(word) # 确保self.vocab中含有所有邮件中的单词
# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
# c是0或1,垃圾邮件的标签
if word not in self.word_counts[c]:
self.word_counts[c][word] = 0.0
self.word_counts[c][word] += count
#测试
MNB = SpamDetector_2()
# 选取了第100封之后的邮件作为训练集,前面一百封邮件作为测试集
MNB.fit(X[100:], y[100:])
print("log_class_priors of spam", MNB.log_class_priors['spam']) #-0.6776
print("log_class_priors of ham", MNB.log_class_priors['ham']) #-0.7089
class SpamDetector(SpamDetector_2):
def predict(self, X):
result = []
flag_1 = 0
# 遍历所有的测试集
for x in X:
counts = self.get_word_counts(self.tokenize(x)) # 生成可以记录单词以及该单词出现的次数的字典
spam_score = 0
ham_score = 0
flag_2 = 0
for word, _ in counts.items():
if word not in self.vocab:
continue
# 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
else:
# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
spam_score += log_w_given_spam
ham_score += log_w_given_ham
flag_2 += 1
# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
spam_score += self.log_class_priors['spam']
ham_score += self.log_class_priors['ham']
# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
if spam_score > ham_score:
result.append(1)
else:
result.append(0)
flag_1 += 1
return result
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
accuracy = 0
for i in range(100):
if pred[i] == true[i]:
accuracy += 1
print(accuracy) # 0.98
运行结果:
总结:可以看到对于垃圾邮件分类的准确度能够达到98%,所以我们可以使用基于贝叶斯算法对垃圾邮件进行分类。