MapReduce编程(一) WordCount

一、软件环境

我使用的软件版本如下:

  1. Intellij Idea 2017.1
  2. Maven 3.3.9
  3. macOS 本地配置Hadoop环境单服务(Docker Hadoop分布式环境( 安装教程可参考这里))

二、创建maven工程

打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creat from archetype,如果想创建web工程或者使用骨架可以勾选) 
  

完整的工程路径如下图所示: 

三、添加maven依赖

在pom.xml添加依赖,对于hadoop 2.8.3版本的hadoop,需要的jar包有以下几个:

  • hadoop-common
  • hadoop-hdfs
  • hadoop-mapreduce-client-core
  • hadoop-mapreduce-client-jobclient
  • log4j( 打印日志)

    pom.xml中的依赖如下:

     <dependencies>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>4.12</version>
            </dependency>
            <!-- hadoop 分布式文件系统类库 -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>2.8.3</version>
            </dependency>
            <!-- hadoop 公共类库 -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.8.3</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-core</artifactId>
                <version>2.8.3</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
                <version>2.8.3</version>
            </dependency>
    
            <dependency>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
                <version>1.2.17</version>
            </dependency>
        </dependencies>

    四、配置log4j

    src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:

    log4j.rootLogger = debug,stdout
    
    ### 输出信息到控制抬 ###
    log4j.appender.stdout = org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.Target = System.out
    log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

    五、启动Hadoop

    cd /Users/cl/service/hadoop-2.8.3/sbin
    ./start-all.sh
    访问http://localhost:50070/查看hadoop是否正常启动。

    六、运行WordCount(从本地读取文件)

    在工程根目录下新建input文件夹,input文件夹下新增dream.txt,随便写入一些单词:
    hello java
    hello hadoop
    在src/main/java目录下新建包,新增FileUtil.java,创建一个删除output文件的函数,以后就不用手动删除了。内容如下:
    package com.cl.hadoop;
    
    import java.io.File;
    
    public class FileUtil {
    
        public static boolean deleteDir(String path) {
            File dir = new File(path);
            if (dir.exists()) {
                for (File f : dir.listFiles()) {
                    if (f.isDirectory()) {
                        deleteDir(f.getName());
                    } else {
                        f.delete();
                    }
                }
                dir.delete();
                return true;
            } else {
                System.out.println("文件(夹)不存在!");
                return false;
            }
        }
    
    }
    
    编写WordCount的MapReduce程序WordCount.java,内容如下:
    package com.cl.hadoop;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    /**
     * 分词统计
     */
    public class WordCount {
    
        public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    
            public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
                //每一行的内容分割,如hello java,分割成一个String数组有两个数据,分别是hello,java
                StringTokenizer itr = new StringTokenizer(value.toString());
                //循环数组,将其中的每个数据当做输出的键,值为1,表示这个键出现一次
                while (itr.hasMoreTokens()) {
                    //context.write方法可以将map得到的键值对输出
                    context.write(new Text(itr.nextToken()), new IntWritable(1));
                }
            }
    
        }
    
        //自定义的Reducer类必须继承Reducer,并重写reduce方法实现自己的逻辑,泛型参数分别为输入的键类型,值类型;输出的键类型,值类型;之后的reduce类似
        public static class IntSumReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    
            public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
                //key为每一个单独的单词,如:hello,world,you,me等
                //value为这个单词在文本中出现的次数集合,如{1,1,1},表示总共出现了三次
                int sum = 0;
                IntWritable val;
                //循环value,将其中的值相加,得到总次数
                for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
                    val = (IntWritable) i.next();
                }
                //context.write输入新的键值对(结果)
                context.write(key, new IntWritable(sum));
            }
        }
    
        public static void main(String[] args)
                throws IOException, ClassNotFoundException, InterruptedException {
    
            FileUtil.deleteDir("output");
            Configuration conf = new Configuration();
    
            String[] otherArgs = new String[]{"input/dream.txt", "output"};
            if (otherArgs.length != 2) {
                System.err.println("Usage:Merge and duplicate removal <in> <out>");
                System.exit(2);
            }
    
            Job job = Job.getInstance(conf, "WordCount");
            job.setJarByClass(WordCount.class);
            job.setMapperClass(WordCount.TokenizerMapper.class);
            job.setReducerClass(WordCount.IntSumReduce.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    运行完毕以后,会在工程根目录下增加一个output文件夹,打开output/part-r-00000,内容如下:
    hadoop	1
    hello	2
    java	1

    运行过程

    这里在main函数中新增了一个String类型的数组,如果想用main函数的args数组接受参数,在运行时指定输入和输出路径也是可以的。运行WordCount之前,配置Configuration并指定Program arguments即可。 

    七、运行WordCount(从HDFS读取文件)

在HDFS上新建文件夹:
hadoop fs -mkdir /worddir
如果出现Namenode安全模式导致的不能创建文件夹提示:
mkdir: Cannot create directory /worddir. Name node is in safe mode.
运行以下命令关闭safe mode:
hadoop dfsadmin -safemode leave
上传本地文件:
hadoop fs -put dream.txt /worddir
修改otherArgs参数,指定输入为文件在HDFS上的路径:
String[] otherArgs = new String[]{"hdfs://localhost:9000/worddir/dream.txt","output"};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值