X - 大明A+B
话说,经过了漫长的一个多月,小明已经成长了许多,所以他改了一个名字叫“大明”。
这时他已经不是那个只会做100以内加法的那个“小明”了,现在他甚至会任意长度的正小数的加法。
现在,给你两个正的小数A和B,你的任务是代表大明计算出A+B的值。
Input
本题目包含多组测试数据,请处理到文件结束。
每一组测试数据在一行里面包含两个长度不大于400的正小数A和B。
Output
请在一行里面输出输出A+B的值,请输出最简形式。详细要求请见Sample Output。
Sample Input
1.1 2.9
1.1111111111 2.3444323343
1 1.1
Sample Output
4
3.4555434454
2.1
大数计算+细节
#include<cstdio>
#include<stack>
#include<set>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
#include<string>
#include<map>
#include<iostream>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
const int N=10000+5;
const int MOD = 1e5+ 7;
char a[412],b[412];
int sum[412],xiao[412]; //数组sum记录整数和,数组xiao记录小数部分
int main()
{
int i,j;
while(scanf("%s%s",a,b)!=EOF)
{
int lena=strlen(a);
int lenb=strlen(b);
int mida=lena,midb=lenb; //mida,midb分别记录第一个和第二个小数点的位置
for(i=0; i<lena; i++)
if(a[i]=='.')
{
mida=i;
break;
}
if(lena==mida) //对于没有小数部分做预处理,对结果没有影响,方便计算
{
a[lena]='.';
a[lena+1]='0';
lena+=2;
}
for(i=0; i<lenb; i++) //同上
{
if(b[i]=='.')
{
midb=i;
break;
}
}
if(lenb==midb)
{
b[lenb]='.';
b[lenb+1]='0';
lenb+=2;
}
int k=0;
int minl=min(lenb-1-midb,lena-1-mida);//长度最短的小数位
for(int x=lena-1;x>mida+minl;x--) xiao[k++]=a[x]-'0'; //处理小数部分较长者
for(int y=lenb-1;y>midb+minl;y--) xiao[k++]=b[y]-'0'; //处理小数部分较长者
int mid=0;
for(i=mida+minl,j=midb+minl; i>mida; i--,j--)
{ //计算共同的小数部分
mid+=a[i]-'0'+(b[j]-'0');
xiao[k++]=mid%10;
mid/=10;
}
int ans=0;
for(i=mida-1,j=midb-1; i>=0&&j>=0; i--,j--)
{ //计算共同的整数部分
mid+=a[i]-'0'+(b[j]-'0');
sum[ans++]=mid%10;
mid/=10;
}
while(i>=0)
{ //计算可能存在的较长的整数多出的部分,如12.1+8.2,这里计算十位数
mid+=a[i]-'0';
sum[ans++]=mid%10;
mid/=10;
i--;
}
while(j>=0)
{//计算可能存在的较长的整数多出的部分。如计算8.2+12.1
mid+=b[j]-'0';
sum[ans++]=mid%10;
mid/=10;
j--;
}
while(mid)
{ //判断并计算进位,如计算8.2+92.1,进位到百位数
sum[ans++]=mid%10;
mid/=10;
}
for(i=ans-1; i>=0; i--)
printf("%d",sum[i]); //输出整数部分
int r=0;
for(r=0; r<k&&xiao[r]==0; r++) ; //消除小数位后面的零
if(r==k) //判断是否有小数部分
cout<<endl;
else
{
printf("."); //输出小数部分
for(i=k-1; i>=r; i--)
printf("%d",xiao[i]);
cout<<endl;
}
}
return 0;
}