图像预处理
xiaoliyu00
Talk Is Cheap, Show Me The Code'。知易行难,知行合一难
展开
-
图片卷积后的尺寸计算公式
图片卷积后的尺寸计算公式输入图片大小 W×WFilter大小 F×F步长 Spadding的像素数 PN =floor [(W − F + 2P )/S+1]floor[.]表示向下取整输出图片大小为 N×N池化层的功能:第一,又进行了一次特征提取,所以能减小下一层数据的处理量。第二,能够获得更为抽象的信息,从而防止过拟合,也就是提高了一定的泛化性第三,由于这种抽象性,所以能对输入的微小变化产生更大的容忍,也就是保持了它的不变性,这里的容忍包括图像的少量平移、旋转缩放等操作变化。原创 2021-06-08 21:20:44 · 258 阅读 · 0 评论 -
SIFT图像特征匹配学习笔记
来源https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-image-matching-python/总览SIFT(尺度不变特征变换)简单介绍如何使用SIFT执行特征匹配python实现SIFT介绍看一下下面的图像组合,并考虑它们之间的共同元素:显然我们可以看到每张图片都有埃菲尔铁塔,同时我们也可以注意到每张图像都有不同的背景,这是因为图片从不同角度拍摄的,并且在前景中也有原创 2020-10-02 21:31:46 · 2236 阅读 · 2 评论 -
图像特征工程-HOG特征描述符学习笔记
来源https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/总览1.了解HOG功能描述符背后的内部原理和数学2.HOG特征描述符在计算机视觉中广泛用于对象检测3.适用于所有计算机视觉爱好者的有价值的功能工程指南目录1.什么是特征描述符?2.HOG特征描述符简介3.HOG的计算过程3.1预处理数据3.2计算梯度3.3计算幅原创 2020-09-30 18:25:30 · 1499 阅读 · 1 评论