20170515_建立排序二叉树BST

20170515_建立排序二叉树BST


//108. Convert Sorted Array to Binary Search Tree 
//Given an array where elements are sorted in ascending order, 
//convert it to a BST.
//排序二叉树!
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

struct TreeNode
{
	int val;
	TreeNode *left;
	TreeNode *right;
	TreeNode(int x):val(x),left(nullptr),right(nullptr) {}
};

void Outdata(vector<int> &a)
{
	auto beg=a.begin();
	for(; beg!=--a.end(); ++beg)
		cout<<*beg<<",";
	cout<<*beg<<endl;
}

class Solution
{
public:
	//中序遍历排序二叉树
	void InOrder(TreeNode *root)
	{
		TreeNode *p=root;
		if(p==nullptr)
			return;
		else
		{
			InOrder(p->left);
			cout<<p->val<<",";
			InOrder(p->right);
		}
	}
	//排序二叉树插入一个节点
	void InsertBST(TreeNode * &root, TreeNode *s)	//谨记:这是 * + & 
	{
		if(root==nullptr)
			root=s;
		else if(s->val < root->val)
			InsertBST(root->left,s);
		else
			InsertBST(root->right,s);
	}
	//建立排序二叉树
	TreeNode *CreatBST(vector<int> &nums)
	{
		if(nums.size()==0)
			return nullptr;
		else
		{
			TreeNode *root=nullptr;
			for(int i=0; i<nums.size(); ++i)
			{
				TreeNode *s=new TreeNode(nums[i]);
				InsertBST(root,s);
			}
			return root;
		}
	}
	// Convert Sorted Array to Binary Search Tree
    TreeNode *sortedArrayToBST(vector<int> &nums)
	{
		TreeNode *root=CreatBST(nums);
		return root;
    }
};

int main()
{
	cout<<"按顺序输入升序的数组:"<<endl;
	int ch;
	vector<int> a;
	while(cin>>ch)
		a.push_back(ch);
	sort(a.begin(),a.end());
	cout<<"输入的数据是:"<<endl;
	Outdata(a);
	cout<<"输入的数据输出完成."<<endl<<endl;

	Solution example;
	TreeNode *root;
	root=example.sortedArrayToBST(a);
	cout<<"排序二叉树输出的数据是:"<<endl;
	example.InOrder(root);
	cout<<endl;
	cout<<"排序二叉树输出数据完成."<<endl<<endl;

	system("pause");
	return 0;
}



1本程序在vc++6.0编译通过并能正常运行。 2主界面 程序已经尽量做到操作简便了,用户只需要根据提示一步步进行操作就行了。 六思考和总结: 这个课程设计的各个基本操作大部分都在我的综合性实验中实现了,所以做这个主要攻克插入和删除这两个算法!其中插入在书本上已经有了,其中的右平衡算法虽然没有给出,但通过给出的左平衡算法很容易就可以写出右平衡算法。所以最终的点就在于删除算法的实现!做的过程中对插入算法进行了非常非常多次的尝试!花了非常多的时间,这其中很多时候是在对程序进行单步调试,运用了VC6。0的众多良好工具,也学到了很多它的许多好的调试手段。 其中删除算法中最难想到的一点是:在用叶子结点代替要删除的非叶子结点后,应该递归的运用删除算法去删除叶子结点!这就是整个算法的核心,其中很强烈得体会到的递归的强大,递归的最高境界(我暂时能看到的境界)! 其它的都没什么了。选做的那两个算法很容易实现的: 1合并两棵平衡二叉排序树:只需遍历其中的一棵,将它的每一个元素插入到另一棵即可。 2拆分两棵平衡二叉排序树:只需以根结点为中心,左子树独立为一棵,右子树独立为一棵,最后将根插入到左子树或右子树即可。 BSTreeEmpty(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:若T为空平衡二叉排序树,则返回TRUE,否则FALSE. BSTreeDepth(BSTree T) 初始条件:平衡二叉排序树存在。 操作结果:返回T的深度。 LeafNum(BSTree T) 求叶子结点数,非递归中序遍历 NodeNum(BSTree T) 求结点数,非递归中序遍历 DestoryBSTree(BSTree *T) 后序遍历销毁平衡二叉排序树T R_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作右旋处理,处理之后p指向新的树根结点 即旋转处理之前的左子树的根结点 L_Rotate(BSTree *p) 对以*p为根的平衡二叉排序树作左旋处理,处理之后p指向新的树根结点, 即旋转处理之前的右子树的根结点 LeftBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作左平衡旋转处理, 本算法结束时,指针T指向新的根结点 RightBalance(BSTree *T) 对以指针T所指结点为根的平衡二叉排序树作右平衡旋转处理, 本算法结束时,指针T指向新的根结点 Insert_AVL(BSTree *T, TElemType e, int *taller) 若在平衡的二叉排序树T中不存在和e有相同的关键字的结点, 则插入一个数据元素为e的新结点,并返回OK,否则返回ERROR. 若因插入而使二叉排序树失去平衡,则作平衡旋转处理 布尔变量taller反映T长高与否 InOrderTraverse(BSTree T) 递归中序遍历输出平衡二叉排序树 SearchBST(BSTree T, TElemType e, BSTree *f, BSTree *p) 在根指针T所指的平衡二叉排序树中递归的查找其元素值等于e的数据元素, 若查找成功,则指针p指向该数据元素结点,并返回TRUE,否则指针p 指向查找路径上访问的最后一个结点并返回FALSE,指针f指向T的双亲, 其初始调用值为NULL Delete_AVL(BSTree *T, TElemType e, int *shorter) 在平衡二叉排序树中删除元素值为e的结点,成功返回OK,失败返回ERROR PrintBSTree_GList(BSTree T) 以广义表形式打印出来 PrintBSTree_AoList(BSTree T, int length) 以凹入表形式打印,length初始值为0 Combine_Two_AVL(BSTree *T1, BSTree T2) 合并两棵平衡二叉排序树 Split_AVL(BSTree T, BSTree *T1, BSTree *T2) 拆分两棵平衡二叉树 } (2)存储结构的定义: typedef struct BSTNode { TElemType data; int bf; //结点的平衡因子 struct BSTNode *lchild, *rchild;//左.右孩子指针 }BSTNode, *BSTree;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值