格子取数问题

转自 面试算法:格子取数问题,完美洗牌算法
http://www.aboutyun.com/thread-9995-1-1.html
(出处: about云开发)

题目详情:有n*n个格子,每个格子里有正数或者0,从最左上角往最右下角走,只能向下和向右,一共走两次(即从左上角走到右下角走两趟),把所有经过的格子的数加起来,求最大值SUM,且两次如果经过同一个格子,则最后总和SUM中该格子的计数只加一次。


 题目分析:此题是去年2013年搜狗的校招笔试题。初看到此题,因为要让两次走下来的路径总和最大,读者可能最初想到的思路可能是让每一次的路径都是最优的,即不顾全局,只看局部,让第一次和第二次的路径都是最优。
    但问题马上就来了,虽然这一算法保证了连续的两次走法都是最优的,但却不能保证总体最优,相应的反例也不难给出,请看下图:


上图中,图一是原始图,那么我们有以下两种走法可供我们选择:

  • 如果按照上面的局部贪优走法,那么第一次势必会如图二那样走,导致的结果是第二次要么取到2,要么取到3,
  • 但若不按照上面的局部贪优走法,那么第一次可以如图三那样走,从而第二次走的时候能取到2 4 4,很显然,这种走法求得的最终SUM值更大;
    为了便于读者理解,我把上面的走法在图二中标记出来,而把应该正确的走法在上图三中标示出来,如下图所示:

  也就是说,上面图二中的走法太追求每一次最优,所以第一次最优,导致第二次将是很差;而图三第一次虽然不是最优,但保证了第二次不差,所以图三的结果优于图二。由此可知不要只顾局部而贪图一时最优,而丧失了全局最优。

解法一、直接搜索    

局部贪优不行,我们可以考虑穷举,但最终将导致复杂度过高,所以咱们得另寻良策。

针对此题,可以使用直接搜索法,一共搜(2n-2)步,每一步有四种走法,考虑不相交等条件可以剪去很多枝,代码如下:


//copyright@西芹_new 2013  
#include "stdafx.h"    
#include <iostream>    
using namespace std;    
    
#define N 5    
int map[5][5]={    
    {2,0,8,0,2},    
    {0,0,0,0,0},    
    {0,3,2,0,0},    
    {0,0,0,0,0},    
    {2,0,8,0,2}};    
int sumMax=0;    
int p1x=0;    
int p1y=0;    
int p2x=0;    
int p2y=0;    
int curMax=0;    
    
void dfs( int index){    
    if( index == 2*N-2){    
        if( curMax>sumMax)    
            sumMax = curMax;    
        return;    
    }    
    
    if( !(p1x==0 && p1y==0) && !(p2x==N-1 && p2y==N-1))    
    {    
        if( p1x>= p2x && p1y >= p2y )    
            return;    
    }    
    
    //right right    
    if( p1x+1<N && p2x+1<N ){    
        p1x++;p2x++;    
        int sum = map[p1x][p1y]+map[p2x][p2y];    
        curMax += sum;    
        dfs(index+1);    
        curMax -= sum;    
        p1x--;p2x--;    
    }    
    
    //down down    
    if( p1y+1<N && p2y+1<N ){    
        p1y++;p2y++;    
        int sum = map[p1x][p1y]+map[p2x][p2y];    
        curMax += sum;    
        dfs(index+1);    
        curMax -= sum;    
        p1y--;p2y--;    
    }    
    
    //rd    
    if( p1x+1<N && p2y+1<N ) {    
        p1x++;p2y++;    
        int sum = map[p1x][p1y]+map[p2x][p2y];    
        curMax += sum;    
        dfs(index+1);    
        curMax -= sum;    
        p1x--;p2y--;    
    }    
    
    //dr    
    if( p1y+1<N && p2x+1<N ) {    
        p1y++;p2x++;    
        int sum = map[p1x][p1y]+map[p2x][p2y];    
        curMax += sum;    
        dfs(index+1);    
        curMax -= sum;    
        p1y--;p2x--;    
    }    
}    
    
int _tmain(int argc, _TCHAR* argv[])    
{    
    curMax = map[0][0];    
    dfs(0);    
    cout <<sumMax-map[N-1][N-1]<<endl;    
    return 0;    
}    

解法二、动态规划    
上述解法一的搜索解法是的时间复杂度是指数型的,如果是只走一次的话,是经典的dp。
2.1、DP思路详解    故正如@绿色夹克衫所说:此题也可以用动态规划求解,主要思路就是同时DP 2次所走的状态。

    1、先来分析一下这个问题,为了方便讨论,先对矩阵做一个编号,且以5*5的矩阵为例(给这个矩阵起个名字叫M1):

M1
0  1  2  3  4
1  2  3  4  5
2  3  4  5  6
3  4  5  6  7
4  5  6  7  8

 从左上(0)走到右下(8)共需要走8步(2*5-2)。我们设所走的步数为s。因为限定了只能向右和向下走,因此无论如何走,经过8步后(s = 8)都将走到右下。而DP的状态也是依据所走的步数来记录的。
  再来分析一下经过其他s步后所处的位置,根据上面的讨论,可以知道:
  • 经过8步后,一定处于右下角(8);
  • 那么经过5步后(s = 5),肯定会处于编号为5的位置;
  • 3步后肯定处于编号为3的位置;
  • s = 4的时候,处于编号为4的位置,此时对于方格中,共有5(相当于n)个不同的位置,也是所有编号中最多的。

  故推广来说,对于n*n的方格,总共需要走2n - 2步,且当s = n - 1时,编号为n个,也是编号数最多的。
  如果用DP[s,i,j]来记录2次所走的状态获得的最大值,其中s表示走s步,i和j分别表示在s步后第1趟走的位置和第2趟走的位置。

  2、为了方便描述,再对矩阵做一个编号(给这个矩阵起个名字叫M2):
M2
0  0  0  0  0
1  1  1  1  1
2  2  2  2 2
3  3  3  3  3
4  4  4  4  4
  把之前定的M1矩阵也再贴下:
  1. M1 
  2. 0  1  2  3  4
  3. 1  2  3  4  5
  4. 2  3  4  5  6
  5. 3  4  5  6  7
  6. 4  5  6  7  8
复制代码


  我们先看M1,在经过6步后,肯定处于M1中编号为6的位置。而M1中共有3个编号为6的,它们分别对应M2中的2 3 4。故对于M2来说,假设第1次经过6步走到了M2中的2,第2次经过6步走到了M2中的4,DP[s,i,j] 则对应 DP[6,2,4]。由于s = 2n - 2,0 <= i<= <= j <= n,所以这个DP共有O(n^3)个状态。
  1. M1
  2. 0  1  2  3  4
  3. 1  2  3  4  5
  4. 2  3  4  5  6
  5. 3  4  5  6  7
  6. 4  5  6  7  8
复制代码


  再来分析一下状态转移,以DP[6,2,3]为例(就是上面M1中加粗的部分),可以到达DP[6,2,3]的状态包括DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3]。
  3、下面,我们就来看看这几个状态:DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3],用加粗表示位置DP[5,1,2]    DP[5,1,3]    DP[5,2,2]    DP[5,2,3] (加红表示要达到的状态DP[6,2,3])
  1. 0 1 2 3 4    0 1 2 3 4    0 1 2 3 4    0 1 2 3 4
  2. 1 2 3 4 5    1 2 3 4 5    1 2 3 4 5    1 2 3 4 5
  3. 2 3 4 5 6    2 3 4 5 6    2 3 4 5 6    2 3 4 5 6
  4. 3 4 5 6 7    3 4 5 6 7    3 4 5 6 7    3 4 5 6 7
  5. 4 5 6 7 8    4 5 6 7 8    4 5 6 7 8    4 5 6 7 8
复制代码


  因此:
DP[6,2,3] = Max(DP[5,1,2] ,DP[5,1,3],DP[5,2,2],DP[5,2,3]) + 6,2和6,3格子中对应的数值    (式一) 
  上面(式一)所示的这个递推看起来没有涉及:“如果两次经过同一个格子,那么该数只加一次的这个条件”,讨论这个条件需要换一个例子,以DP[6,2,2]为例:DP[6,2,2]可以由DP[5,1,1],DP[5,1,2],DP[5,2,2]到达,但由于i = j,也就是2次走到同一个格子,那么数值只能加1次。
  所以当i = j时,
DP[6,2,2] = Max(DP[5,1,1],DP[5,1,2],DP[5,2,2]) + 6,2格子中对应的数值                                         (式二)



  4、故,综合上述的(式一),(式二)最后的递推式就是
  1. if(i != j)
  2. DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j - 1], DP[s - 1, i, j]) + W[s,i] + W[s,j]
  3. else
  4. DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j]) + W[s,i]
复制代码


    其中W[s,i]表示经过s步后,处于i位置,位置i对应的方格中的数字。下一节我们将根据上述DP方程编码实现。 2.2、DP方法实现     为了便于实现,我们认为所有不能达到的状态的得分都是负无穷,参考代码如下:
  1. //copyright@caopengcs 2013  
  2. const int N = 202;  
  3. const int inf = 1000000000;  //无穷大  
  4. int dp[N * 2][N][N];    
  5. bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法  
  6. int y1 = step - x1, y2 = step - x2;  
  7.     return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n));  
  8. }  
  9.   
  10. int getValue(int step, int x1,int x2,int n) {  //处理越界 不存在的位置 给负无穷的值  
  11.     return isValid(step, x1, x2, n)?dp[step][x1][x2]:(-inf);  
  12. }  
  13.   
  14. //状态表示dp[step][i][j] 并且i <= j, 第step步  两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 空间复杂度O(n^3)   
  15. int getAnswer(int a[N][N],int n) {  
  16. int P = n * 2 - 2; //最终的步数  
  17. int i,j,step;  
  18.       
  19.     //不能到达的位置 设置为负无穷大  
  20.     for (i = 0; i < n; ++i) {  
  21.         for (j = i; j < n; ++j) {  
  22.             dp[0][i][j] = -inf;  
  23.         }  
  24.       
  25.     }  
  26.     dp[0][0][0] = a[0][0];  
  27.   
  28.       for (step = 1; step <= P; ++step) {  
  29.         for (i = 0; i < n; ++i) {  
  30.             for (j = i; j < n; ++j) {  
  31.                 dp[step][i][j] = -inf;  
  32.                 if (!isValid(step, i, j, n)) { //非法位置  
  33.                     continue;  
  34.                 }  
  35.                 //对于合法的位置进行dp  
  36.                 if (i != j) {  
  37.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n));  
  38.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j, n));  
  39.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j - 1, n));  
  40.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j,n));  
  41.                     dp[step][i][j] += a[i][step - i] + a[j][step - j];  //不在同一个格子,加两个数  
  42.                 }  
  43.                 else {  
  44.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n));  
  45.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j,  n));  
  46.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j,  n));  
  47.                     dp[step][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次  
  48.                 }  
  49.                   
  50.             }  
  51.         }  
  52.     }  
  53.     return dp[P][n - 1][n- 1];  
  54. }  
复制代码


    复杂度分析:状态转移最多需要统计4个变量的情况,看做是O(1)的,共有O(n^3)个状态,所以总的时间复杂度是O(n^3)的,且dp数组开了N^3大小,故其空间复杂度亦为O(n^3)。

2.3、DP实现优化版
    如上节末所说,2.2节实现的代码的复杂度空间复杂度是O(n^3),事实上,空间上可以利用滚动数组优化,由于每一步的递推只跟上1步的情况有关,因此可以循环利用数组,将空间复杂度降为O(n^2)。
    即我们在推算dp[step]的时候,只依靠它上一次的状态dp[step - 1],所以dp数组的第一维,我们只开到2就可以了。即step为奇数时,我们用dp[1][j]表示状态,step为偶数我们用dp[0][j]表示状态,这样我们只需要O(n^2)的空间,这就是滚动数组的方法。滚动数组写起来并不复杂,只需要对上面的代码稍作修改即可,优化后的代码如下:

  1. <span style="font-style: normal;">//copyright@caopengcs 8/24/2013  
  2. int dp[2][N][N];  
  3.   
  4. bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法  
  5. int y1 = step - x1, y2 = step - x2;  
  6.     return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n));  
  7. }  
  8.   
  9. int getValue(int step, int x1,int x2,int n) {  //处理越界 不存在的位置 给负无穷的值  
  10.     return isValid(step, x1, x2, n)?dp[step % 2][x1][x2]:(-inf);  
  11. }  
  12.   
  13. //状态表示dp[step][i][j] 并且i <= j, 第step步  两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 使用滚动数组 空间复杂度O(n^2)   
  14. int getAnswer(int a[N][N],int n) {  
  15. int P = n * 2 - 2; //最终的步数  
  16. int i,j,step,s;  
  17.       
  18.     //不能到达的位置 设置为负无穷大  
  19.     for (i = 0; i < n; ++i) {  
  20.         for (j = i; j < n; ++j) {  
  21.             dp[0][i][j] = -inf;  
  22.         }  
  23.       
  24.     }  
  25.     dp[0][0][0] = a[0][0];  
  26.   
  27.       for (step = 1; step <= P; ++step) {  
  28.         for (i = 0; i < n; ++i) {  
  29.             for (j = i; j < n; ++j) {  
  30.                 dp[step][i][j] = -inf;  
  31.                 if (!isValid(step, i, j, n)) { //非法位置  
  32.                     continue;  
  33.                 }  
  34.                 s = step % 2;  //状态下表标  
  35.                 //对于合法的位置进行dp  
  36.                 if (i != j) {  
  37.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n));  
  38.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j, n));  
  39.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j - 1, n));  
  40.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j,n));  
  41.                     dp[s][i][j] += a[i][step - i] + a[j][step - j];  //不在同一个格子,加两个数  
  42.                 }  
  43.                 else {  
  44.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n));  
  45.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j,  n));  
  46.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j,  n));  
  47.                     dp[s][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次  
  48.                 }  
  49.                   
  50.             }  
  51.         }  
  52.     }  
  53.     return dp[P % 2][n - 1][n- 1];  
  54. }  </span>
复制代码



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值