There are G people in a gang, and a list of various crimes they could commit.
The i
-th crime generates a profit[i]
and requires group[i]
gang members to participate.
If a gang member participates in one crime, that member can't participate in another crime.
Let's call a profitable scheme any subset of these crimes that generates at least P
profit, and the total number of gang members participating in that subset of crimes is at most G.
How many schemes can be chosen? Since the answer may be very large, return it modulo 10^9 + 7
.
Example 1:
Input: G = 5, P = 3, group = [2,2], profit = [2,3] Output: 2 Explanation: To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1. In total, there are 2 schemes.
Example 2:
Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8] Output: 7 Explanation: To make a profit of at least 5, the gang could commit any crimes, as long as they commit one. There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).
Note:
1 <= G <= 100
0 <= P <= 100
1 <= group[i] <= 100
0 <= profit[i] <= 100
1 <= group.length = profit.length <= 100
class Solution {
public:
int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit)
{
//还没有剔除group中大于G的犯罪种类;
int n = profit.size() , modl = 1000000007 ;
long res = 0 ;
vector<unordered_multiset<long>> dp(n + 1) ;
for(int i = 0 ; i < n ; ++i)
for(int j = i + 1 ; j >= 1 ; --j)
{
for(auto& ele : dp[j - 1])
dp[j].insert(ele + profit[i]) ;
}
for(int i = 1 ; i <= n ; ++i)
{
for(auto ele : dp[i])
{
if(ele >= P) res++;
}
}
return res % modl ;
}
};
class Solution {
public:
int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit)
{
vector<vector<long>> dp(G + 1 , vector<long>(P + 1 , 0)) ;
dp[0][0] = 1 ;
long res = 0 ;
int modl = 1000000007 ;
for(int i = 0 ; i < profit.size() ; ++i)
for(int j = G ; j >= group[i] ; --j)
for(int k = P ; k >= 0; --k)
dp[j][k] = (dp[j][k] + dp[j - group[i]][max(0 , k - profit[i])]) % modl ;
for(int i = 1 ; i <= G ; ++i) res = (res + dp[i][P]) % modl ;
return res % modl ;
}
};