879. Profitable Schemes

There are G people in a gang, and a list of various crimes they could commit.

The i-th crime generates a profit[i]and requires group[i] gang members to participate.

If a gang member participates in one crime, that member can't participate in another crime.

Let's call a profitable scheme any subset of these crimes that generates at least Pprofit, and the total number of gang members participating in that subset of crimes is at most G.

How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

 

Example 1:

Input: G = 5, P = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation: 
To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.

Example 2:

Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation: 
To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

 

Note:

  1. 1 <= G <= 100
  2. 0 <= P <= 100
  3. 1 <= group[i] <= 100
  4. 0 <= profit[i] <= 100
  5. 1 <= group.length = profit.length <= 100

 

class Solution {
public:
    int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) 
    {
        //还没有剔除group中大于G的犯罪种类;
        int n = profit.size() , modl = 1000000007 ;
        long res = 0 ;
        vector<unordered_multiset<long>> dp(n + 1) ;
        for(int i = 0 ; i < n ; ++i)
            for(int j = i + 1 ; j >= 1 ; --j)
            {
                for(auto& ele : dp[j - 1])
                    dp[j].insert(ele + profit[i]) ;
            }
        
        for(int i = 1 ; i <= n ; ++i)
        {
            for(auto ele : dp[i])
            {
                if(ele >= P)  res++;
            }
        }
        
        return res % modl ;
    }
};
class Solution {
public:
    int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) 
    {
        vector<vector<long>> dp(G + 1 , vector<long>(P + 1 , 0)) ;
        dp[0][0] = 1 ;
        long res = 0 ;
        int modl = 1000000007 ;
        
        for(int i = 0 ; i < profit.size() ; ++i)
            for(int j = G ; j >= group[i] ; --j)
                for(int k = P ; k >= 0; --k)
                    dp[j][k] = (dp[j][k] + dp[j - group[i]][max(0 , k - profit[i])]) % modl ;
        
        for(int i = 1 ; i <= G ; ++i) res = (res + dp[i][P]) % modl ;
        
        return res % modl ;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值