管理信息系统(MIS)概述

本文概述了管理信息系统(MIS)的定义、组成部分、作用及其在决策支持、数据处理和组织管理中的关键角色。强调了信息作为决策基石和数据转化为信息的重要性,同时讨论了信息系统实施的挑战和策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

管理信息系统(MIS)概述

 

管理信息系统(Management Information System)系统是一个不断发展的新型学科,MIS的定义随着 计算机技术和通讯技术的进步也在不断更新,在现阶段普遍认为管理信息系统是一个由人、计算机及其他外围设备等组成的能进行信息的收集、传递、存贮、加工、维护和使用的系统。

信息系统可以向决策者或管理者提供信息,帮助他们正确决策和改善企业过程的执行,从而增加收益或减少成本。

信息是管理信息系统的最重要的成分。管理信息系统能起多大作用,对管理能作出多大贡献,都取决于有没有足够的和高质量的信息,而能否得到高质量的信息又取决于人们对信息的认识。

 

管理信息系统MIS是一个交叉性综合性学科,组成部分有:计算机学科(网络通讯、数据库、计算机语言等)、数学(统计学、运筹学、线性规划等)、管理学、仿真等多学科。信息是管理上的一项极为重要的资源,管理工作的成败取决于能否做出有效的决策,而决策的正确程度则在很大程度上取决于信息得质量。

 

信息技术有两种基本类型:硬件和软件。硬件通常是指组成计算机系统的物理设备;软件就是用来完成某个特定的任务,由计算机硬件执行的一系列指令。

       硬件可以分为六类:输入设备、输出设备、存储设备、中央处理器( CPU)、远程通信设备和连接设备。

       软件分为两大类:应用软件和系统软件。

 

基于计算机的信息系统(Computer Based Information System,CBIS)依赖于计算机的硬件和软件技术去处理与分发信息。

 

信息系统的维度

 

组织维

一个组织的关键因素是它的人员、结构、企业过程、政策和文化。组织是由不同的层次和专业任务组成的&

### 配置和使用CUDA 为了在Python环境中配置和使用CUDA,通常推荐采用Anaconda作为主要工具来进行环境管理[^1]。这不仅简化了依赖项管理和包安装的过程,还提供了更稳定的工作环境。 #### 安装Anaconda 首先访问Anaconda官方网站下载适合操作系统的版本并按照指示完成安装过程。一旦安装完毕,启动Anaconda Prompt(Windows)或终端(Linux/MacOS),准备创建新的工作环境。 #### 创建新环境并与CUDA集成 通过以下命令可以基于特定需求定制化创建一个新的Conda环境: ```bash conda create --name cuda_env python=3.9 ``` 激活新建的环境以便后续操作均在此环境下执行: ```bash conda activate cuda_env ``` 接着,安装支持CUDA功能的相关库。对于深度学习框架而言,比如PyTorch, 可以直接指定带有GPU支持的版本进行安装: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 上述命令会自动解决所有必要的依赖关系,并确保所选版本之间的兼容性。 #### 测试CUDA可用性 确认安装成功后,在Python脚本内可以通过如下方式验证CUDA是否能够被正确识别: ```python import torch if torch.cuda.is_available(): print(f"CUDA is available! Using {torch.cuda.get_device_name(0)}") else: print("CUDA not found.") ``` 这段简单的测试代码可以帮助快速判断当前设置下是否有有效的CUDA设备可供调用。 #### 使用PaddlePaddle GPU版 如果计划使用百度开发的深度学习框架PaddlePaddle,则需遵循官方给出的具体指令来获取对应于目标硬件架构优化过的二进制文件[^2]: ```bash python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html ``` 此方法同样适用于其他类型的GPU加速应用,只需调整URL指向相应的资源位置即可满足不同场景下的部署需求。 #### 结合OpenCV与CUDA加速图像处理 当涉及到高性能图像处理任务时,结合OpenCV和CUDA能显著提升效率。具体做法是在构建阶段就引入对CUDA的支持选项,使得最终生成的应用程序可以直接利用GPU资源加快运算速度[^3]。 ```bash pip install opencv-python-headless opencv-contrib-python-headless ``` 虽然以上步骤已经包含了基本的功能模块,但对于追求极致性能的情况来说,可能还需要进一步探索源码编译等方式来自定义更多高级特性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习&实践爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值