数学杂谈之二:数学中的概念和理解

本文探讨了数学中的概念形成、定义、符号表示以及理解的重要性,强调了观察、逻辑推理和精确定义在数学学习中的关键作用,同时提到了前概念与科学概念的区别及其在教学中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学杂谈之二:数学中的概念和理解

数学杂谈之一:数学的形态 https://blog.csdn.net/cnds123/article/details/137437208

概念是推理和思维活动的基础和前提。概念越准确、体系越完备,思维和推理的质量就越高。在数学和逻辑学中,概念是推理的基本单位,它是思维的基本要素,通过对概念的定义、分类、归纳和推理,我们可以建立逻辑思维链条,从而进行推理和证明。

数学概念的表现形式是多样的,基于数学语言和符号系统的特点,其中主要包括:

符号(Symbols):数学符号是数学表达中使用的字母、数字和其他特殊字符,如 π、∑、等,用以简洁地表示数学量、操作和关系。

定义(Definitions):定义明确了数学概念的精确含义,它们是描述特定概念的特性、属性和条件的陈述,使得概念在数学讨论中得到明确无误的理解。

公式(Formulas):公式是表示某些数学关系的等式,常用于描述变量之间的函数关系,如圆周长公式:C = 2πr、平方公式:(a + b)² = a² + 2ab + b²。

定理(Theorems):定理是在已知条件下通过逻辑推理得到的结论,通常需要证明。它们是数学知识中的核心部分,例如费马大定理和欧拉公式。

图形(Graphs):图形是一种视觉表现形式,用于表示函数、几何图形或数据集的视觉解释,如直线、圆或多边形,以及更复杂的几何体。

图表(Charts and Tables):图表和表格用于组织和展示数据,使信息易于理解和分析,如频率分布表、散点图、柱状图等。

形成正确的概念是一个复杂而重要的过程,通常需要以下几个步骤:

观察和感知:正确的概念通常源自对现实世界的观察和感知。通过观察对象的特征、相似之处和差异之处,人们可以形成对事物的认识和概念。

概念的定义:在形成概念之后,需要对概念进行准确的定义。定义是对概念的描述和界定,通过定义可以确定一个概念的内涵和外延,从而确保人们对概念的理解是一致的。

归纳和分类:通过对多个事物的共同特征和规律性进行归纳和分类,可以形成更为抽象和普遍的概念。分类和归纳是概念形成过程中的重要方法,可以帮助人们更好地理解和运用概念。

推理和验证:形成概念后,需要通过逻辑推理和实际验证来检验和验证这些概念的正确性。通过推理和验证,可以进一步确认概念的有效性和适用性。

数学概念是数学学科的基础,它们是抽象化的思维产物,反映了现实世界中某种数量或空间形式的本质属性。数学中的概念解是构成数学理论体系的基本要素,它们为解决问题、推导定理和建立模型提供了基础。

在数学中,概念和理解是相互依存、相互促进的。概念是理解的基础,没有清晰的概念,就谈不上深入的理解。同时,理解又是深化概念的关键,只有通过深入的理解,才能真正把握概念的内涵和外延,从而更好地运用它们。

如何明确理解数学中的概念?

1.首先要做到的是准确掌握其定义。每一个数学概念都有其严谨的定义,这是理解概念的起点。例如,在数学中,“函数”的定义是“将一个或多个自变量映射到一个因变量的一组操作”。通过这个定义,我们可以了解到函数是一种映射关系,它的输入是自变量,输出是因变量,每一个输入值都有唯一的输出值。只有准确掌握了这些定义,我们才能进一步理解概念的内涵和外延。内涵是概念的本质属性,外延是概念所包含的对象范围。但是由于客观事物往往并不是我们能够一一列举完的,且思考和研究更多地是要求明确的是概念的内涵即定义。

2.理解数学概念还需要理解其背后的逻辑和原理。数学不是孤立的符号和公式的堆砌,而是有其内在的逻辑和规律。我们需要探究这些概念是如何推导出来的,它们之间的关系是如何建立的,以及它们是如何应用于实际问题的。通过必要的逻辑验证,梳理其内在逻辑关系,检查概念的定义和应用是否逻辑一致,确保没有逻辑上的矛盾。例如,理解微积分中的极限概念,就需要深入探究其背后的逻辑和原理,理解它如何描述了量的变化趋势。

3.对比分析,通过与相关概念的比较,明确该概念的独特之处。这包括区分相似概念和反义概念。有些概念之间可能存在相似之处,容易混淆。要明确概念,需要区分这些相似概念,分析明确它们之间的异同点。例如,在数学中,“平方”和“立方”都是一种运算,但它们运算的对象和结果不同。“平方”是将一个数自乘一次,而“立方”是将一个数自乘三次。

4.通过例子、练习和实践,我们可以加深对数学概念的理解。通过了解概念的实例,可以加深对概念的理解。数学是一门需要不断实践和应用的学科。通过解决实际问题,我们可以将抽象的数学概念与具体的生活场景相结合,从而加深对概念的理解。过练习和应用,可以检验自己对概念的理解,发现自己的错误和不足,提高自己的运算能力和问题解决能力,提升对数学概念的理解和应用。

5. 考虑概念的语境,概念的意义往往受到其所在语境的影响。因此,在明确概念时,将概念放入正确的上下文中,考虑其所在的特定领域、文化或社会背景,以便更准确地理解其在特定领域或知识体系中的位置和作用。探索概念的起源和演变,了解一个概念的起源和演变过程,可以帮助我们更深入地理解它的含义和背后的思想。这可以通过查阅相关文献、历史资料或专业书籍来实现。

6. 最后,理解数学概念还需要具备一种探究的精神。数学是一个不断发展和完善的学科,新的概念和方法不断涌现。我们需要保持开放的心态,勇于探索新的领域和问题,不断挑战自己的认知边界。只有这样,我们才能真正深入理解数学中的概念,掌握数学的精髓。

理解水平是发展变化的、不同学习者是有差异的,数学理解不是一蹴而就的,具有动态性、阶段性、渐进性等特征。

对数学概念的理解和其它知识理解一样,不是一次完成的,而是逐步深化的,有人主张需要经过初步理解、确切理解和深刻理解三个阶段。初步理解、确切理解和深刻理解,正如层层递进的阶梯,让我们不断将概念学习引向更高境界。

在理解数学知识时,可以采用多种途径和方法,比如讨论、实验、探究、应用等,以促进全面的认知发展和深刻的理解。

理解不仅仅是学习者以数学的形式化语言将其精确地表达出来,将新知识与旧知识建立联系,创建一个丰富的、整合的知识结构,更重要的是理解数学的思想和方法。数学是一门高度抽象的学科,它的本质是逻辑和推理。全面地理解数学知识的学习过程,不仅包括认知层面的结构和过程,也包括对数学知识在各种情境下的应用能力,还包括情感和态度,以及有效的教育实践。

数学概念具有以下几个主要特点:

抽象性,数学概念源于对具体事物的抽象,如数、几何形状、代数运算等。它们脱离了具体对象的物质形式,只保留了对象的本质特征和内在规律。

严格的定义,每个数学概念都必须有明确、严谨的定义,以确保概念内涵和外延的清晰界限。定义要符合逻辑一致性,消除模糊性。

公理化,许多基本的数学概念通过公理的形式加以确定和限定,如欧几里得几何中对点、线、平面等概念的公理定义。

层级递进,数学概念之间存在层级关系,新概念往往建立在旧概念的基础之上,形成有机体系。高阶概念概括了低阶概念的共同本质。

逻辑推理,概念的引入和发展需要遵循严格的逻辑推理,新概念必须在已有概念体系的基础上被合理导出和证明。

结构性,数学概念之间存在严密的逻辑结构,各个概念之间有着明确的关系和联系。数学的发展往往是建立在已有概念和原理的基础上,不断扩展和深化。

总之,数学概念是对数学对象和关系的本质特征的精确抽象和概括,是数学研究和发展的基石,也是数学语言和符号体系的核心组成部分。这些特点使得数学成为一门强大而独特的学科,被广泛应用于自然科学、工程技术、社会科学等各个领域。

在学习过程中,要特别注意消除头脑中的前概念(迷思概念)影响。

在教学领域,前概念(Preconceptions)又称为日常概念、模糊概念、迷思概念、相异构想等,是指未经过专门教学,人们在日常生活中逐步形成的概念。这些前概念中的片面的、模糊的、错误的原有认知与科学概念之间的差异,就是教学的难点,也是学生转变前概念、建构科学概念的“转化难点”。

【有人认为,在含义上有细微差别:

前概念(Preconceptions)通常指在正式教育之前形成的概念,这可能基于个人的直觉、日常经验或社会文化传承。

日常概念(Everyday Concepts)与前概念相似,是指在日常生活中自然获得的、未经科学训练形成的认知构成。

模糊概念(Vague Concepts)可能指的是概念界定不清或解释不够精确的认知。

迷思概念(Misconceptions)是特指错误的概念,是一种误解或错误理解某个科学概念的情形。

相异构想(Alternative Conceptions)通常指的是与科学概念不符的个人内在的想法或解释。

在此不做区分,统称为前概念】

这些概念与科学概念之间存在着差异。这些前概念可能是由于个人经验、社会文化、教育背景等因素造成的,学生在学习科学知识的过程中可能会受到这些前概念的干扰和影响。

在教学中,学生需要经过认知重建的过程,将已有的前概念转化为科学概念。这个过程可能会面临一些困难和挑战,因为学生需要克服原有概念的固化和错误,并接受新的科学概念。教师需要帮助学生识别、理解和超越前概念,引导他们建构正确的科学概念。

例如

学生在学习相反数时,学生就会认为“-a是负数”,因为a带有负号(-);

学习“三角形的稳定性”时,有的学生认为“四边形也具有稳定性”的错误概念,因为他常见的门、窗、桌子等多数都是四边形,都不易变形。

对于负数的理解,透过数轴的示例来说明 -a 可以是负数也可以是正数,取决于 a 的值。

门、窗、桌子等是具体的、有内部的实物,与我们研究的抽象的、无内部的四边形图形有本质的区别,可以创设情境,先让学生拉一拉三角形和四边形框架,得出结论:三角形不易变形,而四边形容易变形。

为了加深对概念和理解,下面简要介绍词汇、日常用语、概念、定义和术语的区别与联系。

词汇(Vocabulary):词汇是某一语言或学科领域中的词语,它是表达意思和传递信息的基本单位。词汇包括单词、短语、表达式等,用于构成语言文本并传递特定的概念或信息。

日常用语(Everyday Language):日常用语是人们在日常生活中使用的语言,用于交流和表达思想感情。日常用语通常是通用的、非专业化的,反映了普通人对事物的直观理解和描述。与科学中的术语和概念相比,日常用语通常更加口语化和灵活。

概念(Concept):概念通常是指对某种事物或现象的抽象理解和描述。在科学中,概念是科学知识的基本组成部分,用于描述和解释现实世界中的规律和现象。科学中的概念通常是经过严格定义和理论支持的,具有普遍性和系统性。

定义(Definition):定义是对概念进行明确和界定的描述或解释,是用来说明概念含义和范围的语言表达。定义可以帮助人们理解和区分概念之间的关系,并减少歧义和误解。

术语(Term):术语是特定领域或学科中的特定名称或符号,用于表示概念、理论或现象。在科学中,术语通常是具有明确定义和特定用途的,可以帮助人们准确沟通和交流科学知识。科学术语通常是专有名词或符号,具有特定含义和用法。

它们之间的关系:

词汇是语言的基本单位,包括日常用语和术语。日常用语和术语都属于词汇范畴,只是用途和严格程度不同。

日常用语通常源于人们对事物的直观经验和感性认知,用来描述日常生活现象。概念则是对这些日常现象的理论总结和抽象,带有一定科学性。

概念需要通过定义来阐明和限定其准确内涵和外延。定义使概念变得明确、规范。

术语是用于表达特定概念的专用词语。每个术语对应一个概念的定义,是概念的语言符号表达。

概念、定义和术语之间存在层级递进的关系:日常现象->概念->定义->术语。也就是说,概念源于对日常现象的抽象,定义阐明概念的内涵,术语是概念的语言符号化。

概念和定义在科学中具有严格性和规范性,而日常用语则相对灵活多变。但日常用语也是概念和定义形成的基础,科学概念常常植根于日常经验。

不同领域中(如数学、物理学)的下定义规则,在某些方面也存在共通之处,但并不完全相同。

数学中的定义通常要求极其精确和严谨,因为数学是一门精密的学科,需要准确定义每个概念以建立推理和证明。物理学中的定义也需要精确性,但可能会容忍一定程度的近似或简化。

在物理学中,定义通常需要与实验结果相一致,并能够通过实验进行验证或观察。这是因为物理学是一门实验性科学,理论必须与实验相符。在数学中,定义通常是基于推理和逻辑,不需要进行实验验证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习&实践爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值