快乐且有意义 活着且向死而生
码龄4年
关注
提问 私信
  • 博客:15,154
    15,154
    总访问量
  • 23
    原创
  • 51,983
    排名
  • 179
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2021-04-27
博客简介:

weixin_57742691的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    182
    当月
    1
个人成就
  • 获得223次点赞
  • 内容获得0次评论
  • 获得132次收藏
  • 代码片获得113次分享
创作历程
  • 23篇
    2024年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

346人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Linux环境变量

查看环境变量 (env定义MACA_PATH,指向特定目录。修改PATH,增加可执行文件搜索路径。修改,增加动态库搜索路径。这样设置后,运行依赖路径中程序和库的命令会正常执行,而无需手动指定完整路径。通过export设置的环境变量默认情况下只在当前 Shell 会话中生效。当前会话:你可以正常使用设置的环境变量。下次登录或新开终端:需要重新设置这些环境变量,除非将其永久保存。解决方法:让环境变量永久生效1. 对于单用户设置将exportBash~/.bashrc或Zsh~/.zshrc。
原创
发布博客 2024.11.20 ·
556 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

C++ assert(0); 的作用

是一个故意引发断言失败的语句,通常用于程序遇到不能继续执行的情况时,强制终止程序并报告错误。用于调试过程中检查不应该发生的情况。它的作用是检查程序中某个条件是否成立,如果不成立,则会导致程序中断并抛出错误信息。的地方,或者开发者想要在某个地方强制停止程序的执行,以便调试和定位问题。会导致程序终止,调试器会显示一条错误消息,告诉你断言失败的位置。是 C/C++ 中的一个调试语句,用于在程序执行时触发。通常意味着程序运行到了一个。
原创
发布博客 2024.11.15 ·
283 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

【C++】类中 this-> 的使用场景是什么

提问:C++中,假设我有一个类,类中有一个属性uint32_t nLayers;我在构造函数中,应该使用this->nLayers = 0;去初始化该属性,还是应该直接使用nLayers = 0;去初始化该属性?回答:在 C++ 中,两种写法在效果上是相同的,但推荐直接使用这种方式初始化类成员。
原创
发布博客 2024.11.13 ·
379 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

【一文梳理】CUDA Toolkit版本,pytorch版本,硬件支持的最高CUDA Toolkit的关系

其中我们要选择的就是CUDA Toolkit的版本,这里我选择了11.8,高于我现在安装的CUDA Toolkit的版本11.2,所以这样是不可以的,我需要选择一个可以适配低于CUDA Toolkit 11.2的torch。在使用GPU进行深度学习的过程中,我们免不了与pytorch打交道,这时候就需要根据我们现有的硬件,选择版本合适的CUDA Toolkit,进而选择版本合适的pytorch。实际安装的CUDA Toolkit的版本要低于或者等于硬件支持的最高的CUDA Toolkit的版本。
原创
发布博客 2024.10.07 ·
1743 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

【CUDA编程】cudaMemcpy函数的理解

cudaMemcpy是 CUDA 中用于在主机(CPU)和设备(GPU)之间复制内存的函数。
原创
发布博客 2024.10.06 ·
622 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

GNU Make utility和 Makefile 的关系

简而言之,GNU Make 是一个构建工具,而 Makefile 是指导这个工具如何工作的脚本。两者密切相关,共同作用于项目的自动化构建过程。
原创
发布博客 2024.09.24 ·
312 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

CMakeLists.txt文件与MakeFile文件的区别与联系

CMakeLists.txt 文件是 CMake(跨平台构建系统)的项目配置文件。它告诉 CMake 如何生成构建系统(例如 Makefile、Visual Studio 项目文件等)。Makefile 是 Make 工具使用的文件,用于控制编译和链接程序的过程。
原创
发布博客 2024.09.24 ·
548 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

【算法基础,简单易懂】对边际收益与次模函数的理解

**"the marginal gain"(边际收益)** 是指在向一个集合 $S$ 中添加一个元素 $v$ 所带来的函数值 $f$ 的增加量。是添加元素 $v$ 前后函数值的差异。因此,边际收益就是添加元素 $v$ 前后函数值的差异。在描述中,函数 $f$ 被称为**次模函数(submodular function)**,如果它满足一种自然的"收益递减"性质:对于任何一个元素 $v$ 和任意两个满足 $S \subseteq T$ 的集合 $S$ 和 $T$,向较小的集合 $S$ 中添加元素 $
原创
发布博客 2024.08.12 ·
708 阅读 ·
29 点赞 ·
0 评论 ·
14 收藏

【集合基础】集合中2^V(幂集)的含义

在数学和计算机科学中,$2^V$ 表示集合 $V$ 的**幂集**。幂集是指 $V$ 的所有子集的集合,包括空集和 $V$ 本身。
原创
发布博客 2024.08.12 ·
891 阅读 ·
28 点赞 ·
0 评论 ·
5 收藏

【英文论文写作】“表示”一词的同义词或者同义词组

在英文论文写作中,“表示”一词可以用多种不同的词语来表达,来避免重复用词与提升文章可读性,以下是一些常见的替代词:RepresentDenoteSignifyRefer toStand for具体的例子如下,下面的句子是对有向图的一些描述::另外,在英文论文写作中,表示“B伴随着A”的词组有:
原创
发布博客 2024.08.12 ·
449 阅读 ·
8 点赞 ·
0 评论 ·
5 收藏

【通俗易懂】集合与集合进行笛卡尔积的结果

集合与集合进行笛卡尔积的结果是一个新的集合,其中包含所有可能的有序对。对于两个集合 A 和 B,它们的笛卡尔积 A×B是由所有可能的有序对 (a,b) 组成的集合,其中 a 属于集合 A, b 属于集合 B。
原创
发布博客 2024.08.11 ·
443 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

【一学就会!】计算机科学中常说的dot-then-exponentiate是什么运算

dot-then-exponentiate” 是一种运算顺序,首先进行点积运算(dot product),然后对结果进行指数运算(exponentiation)。在数学和计算机科学中,尤其是机器学习和深度学习中,这种运算顺序经常出现。在某些情况下,softmax 函数也会使用类似的点积然后指数运算的步骤,将输入转化为概率分布。这种运算在神经网络的激活函数和概率模型中经常出现。例如,在逻辑回归模型中,线性组合。:对点积的结果进行指数运算,例如自然指数函数。本文还用softmax函数举例说明点积--指数运算
原创
发布博客 2024.08.11 ·
427 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

【通俗易懂】计算机术语中trivial和non-trivial是什么意思

计算机科学的术语中,non-trivial是“非平凡”,用来形容任何有意义的、非零的参数或者因子。trivial是“平凡的”,在计算机科学中,通常用来形容那些没有实际意义或非常容易实现的参数或者因子。
原创
发布博客 2024.08.11 ·
1122 阅读 ·
12 点赞 ·
0 评论 ·
4 收藏

解释⊊的含义(包含于加下斜杠,直观上像不包含于)

比如A⊊B,即A是B的真子集,A中所有元素B中都有且A不可能是B本身。另外 ⫋ 也是真包含于的意思,现在普遍使用这个符号。比如A⊆B,即A是B的子集,A有可能是B本身。⊊ :真包含于(阅读论文的时候有可能出现)
原创
发布博客 2024.08.05 ·
1810 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

【计算理论,全面整理】P问题、NP问题、Sharp-P(#P)问题、Sharp-P-complete(#P-complete)问题、NP-complete问题和NP-hard问题

首先P问题、NP问题、NP-complete问题和NP-hard问题属于一条基础线上的几个问题,应该一起讲述(第一部分)。Sharp-P(#P)问题常常与NP问题放到一起讨论,应该在第二部分讲述。本博客旨在总结计算机研究中可能遇到的几类问题,以便已经学习过计算理论的同学在回顾知识的时候查阅。如果未学过计算理论,本博客对您的帮助可能不大。如果总结有错误,欢迎指出。
原创
发布博客 2024.08.05 ·
659 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

英文论文中的英文缩写

w.r.t. 是with respect to的缩写。意思是关于……方面,谈到……,提及……。i.e.意思是即,也就是。e.g.意思是举个例子来说。s.t.是subject to 的缩写。意思是使得...满足...,受...约束。resp. 单独用意思是分别的;放在括号里意思是相应的。
原创
发布博客 2024.07.29 ·
554 阅读 ·
10 点赞 ·
0 评论 ·
2 收藏

集合中{}的上标和下标表示什么

花括号\{\}表示这是一个集合。集合中的元素是⟨VqFq⟩⟨V_q,F_q⟩⟨Vq​Fq​⟩,其中每个元素都是一个二元组(或叫做配对,pair)。VqV_qVq​和FqF_qFq​分别是与qqq相关的两个实体或对象,具体内容取决于问题的背景。通过上标和下标的使用,可以更加精确地描述集合的特性和元素的构成,尤其在数学和计算机科学中,使用这种方式可以更清晰地表达复杂的概念和结构。
原创
发布博客 2024.07.29 ·
926 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

自我网络(Ego-Networks)的定义 - 通俗易懂

自我网络(Ego-Networks)是指以一个特定节点(称为“自我”或“ego”)为中心的子图,包含与该节点直接相连的所有节点(称为“alter”)以及这些节点之间的所有连接。自我网络通常用于分析特定节点在网络中的局部结构和关系。假设有一个社交网络,其中节点代表用户,边代表用户之间的友谊关系。某个用户A的自我网络将包括用户A(自我节点)、与用户A直接相连的所有朋友(替代节点),以及这些朋友之间的所有友谊关系。通过研究自我网络,可以了解特定用户的直接社交圈,分析用户的社交行为和影响力等。
原创
发布博客 2024.07.29 ·
720 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

图论基础 - Self-loop 对于度计算的影响

节点4的度为3:一条正常边(度为1)+一条self-loop边(度为2)节点1的度为4:两条正常边(度为1)+一条self-loop边(度为2)
原创
发布博客 2024.07.28 ·
136 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

无向图与有向图的平均度求解

无向图:计算总度数(即边的两倍),再除以节点数。公式为dˉ2mndˉn2m​。有向图:分别计算平均入度和平均出度,然后相加。总度数等于边的数量,入度和出度的平均值相同。公式为dˉ2mndˉn2m​。虽然两个公式在形式上看起来相似,但它们的计算方法和概念上的理解是不同的。无向图的度数直接计为连接的边数,而有向图的度数分为入度和出度两个部分。
原创
发布博客 2024.07.28 ·
514 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏
加载更多