在人工智能领域 ⊕、⊗和 ⊙ 符号是什么含义?

我们经常在论文中看到 ⊕、⊗和 ⊙ 符号,那么有下面两个问题:

这三个符号有什么作用呢?
如何在论文中正确使用这三个数学符号
1. 两种符号的解释
1.1 逐元素相加:⊕
⊕  在论文中表示逐元素相加,如果用两个矩阵表示,即:

从公式可以看到,⊕ 表示对应元素相加,即两个矩阵的形状必须相同。

1.2 矩阵乘法:⊗
圈乘 ⊗ 表示传统线性代数学的矩阵乘法,用公式即:

可以看到就是普通的矩阵乘法,要求 A 矩阵第二维度与 B 矩阵第一维度相等。

1.3 矩阵点乘:⊙
矩阵点乘 ⊙表示矩阵对应位置元素相乘,例子如下: 

与矩阵加法 ⊕类似,也是要求两个矩阵的维度必须相同。

2. 两种符号的代码表示

名称    
 
符号    PyTorch 代码    含义    条件

矩阵乘法(element-wise)          

torch.mm() 或 torch.matmul() 

矩阵乘法(自动广播) 

 形状相同或满足广播机制

矩阵加法(element-wise)      

+ 或 torch.add(A, B)

两个矩阵对应位置元素相加 

 形状相同或满足广播机制

矩阵点乘

 * 或 torch.mul(A, B)

两个矩阵对应位置元素相乘(自动广播)

 形状相同或满足广播机制


 参考原文链接:https://blog.csdn.net/weixin_44878336/article/details/124501040

参考资源链接:[人工智能行业分析:产业链、竞争格局与前景](https://wenku.csdn.net/doc/2uh76cjrjk?utm_source=wenku_answer2doc_content) 计算硬件是人工智能产业链中的基础层核心组成,对于深度学习AI应用层的发展起到了决定性作用。随着AI技术的不断进步,深度学习模型的复杂度日益增加,对计算资源的需求也随之增长,这就要求计算硬件必须能够提供足够的处理能力高速的数据吞吐量。 GPU(图形处理器)由于其并行计算能力强大,已成为深度学习的主要计算平台。例如,NVIDIA的GPU在训练大型神经网络模型时表现出色,因其能够快速进行矩阵运算数据处理。而FPGA(现场可编程门阵列)则以其低延时可定制的特性,在AI应用中发挥着特殊作用,尤其适用于实时数据处理边缘计算场景。 随着计算硬件技术的演进,我们看到了专用AI计算芯片的发展,如Google的TPU(张量处理单元),这些芯片专门为AI计算优化,能够在保持低能耗的同时,提供比通用CPU更高的计算效率。 从应用层的角度来看,计算硬件的进步直接推动了AI技术在各个领域的实际应用。例如,在自动驾驶汽车中,AI芯片需要在毫秒级内处理大量来自传感器的数据,并做出决策;在医疗诊断中,深度学习模型需要在短时间内分析复杂的医学影像,这都需要强大的计算硬件支持。 为了进一步探索计算硬件在深度学习AI应用中的作用,推荐参阅《人工智能行业分析:产业链、竞争格局与前景》这一PPT课件。该课件不仅详细介绍了人工智能产业链的结构,还深入分析了计算硬件作为关键驱动力在其中的作用,以及它如何推动整个AI行业的发展。通过这份资源,你可以获得关于AI硬件进步与行业应用之间关系的深刻见解,从而更好地理解当前未来的人工智能竞争格局。 参考资源链接:[人工智能行业分析:产业链、竞争格局与前景](https://wenku.csdn.net/doc/2uh76cjrjk?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值