COC游戏的开发(2)

   今天开始介绍项目的开发,首先说下common库,由于项目需要在ios android两个平台发布,所以需要用到转码,这里我就写了一个common库,方便以后各个平台方便转码,而不需要每次都手动转。

   一般在vs下开发和mac下开发有以下三种格式,UTF-8,unicode,GB2312

由于在不同文件系统下格式不同,因此需要用到转化

UTF-8,UNICODE,Gb2312他们3个之间的相互转换.

UTF-8:   1~3字节可变
UNICODE: 2字节一个字符
GB2312:  2字节一个字符
例子: “你”字的UTF-8编码: E4 BD A0        11100100 10111101 10100000
“你”的Unicode编码: 4F 60            01001111 01100000
按照UTF-8的编码规则,分解如下:xxxx0100 xx111101 xx100000
把除了x之外的数字拼接在一起,就变成“你”的Unicode编码了。
注意UTF-8的最前面3个1,表示整个UTF-8串是由3个字节构成的。
经过UTF-8编码之后,再也不会出现敏感字符了,因为最高位始终为1。

因此各自的转换很容易用移位和&,|运算来完成

这里贴下UTF8转unicode的代码,其他的可以依此类推

chinesecode.h

#pragma once
#include <string>
using namespace std;

class CChineseCode
{
   public:
       static void UTF_8ToUnicode(wchar_t* pOut,char *pText);  // 把UTF-8转换成Unicode
       static void UnicodeToUTF_8(char* pOut,wchar_t* pText);  //Unicode 转换成UTF-8
       static void UnicodeToGB2312(char* pOut,wchar_t uData);  // 把Unicode 转换成 GB2312 
       static void Gb2312ToUnicode(wchar_t* pOut,char *gbBuffer);// GB2312 转换成 Unicode
       static void GB2312ToUTF_8(string& pOut,char *pText, int pLen);//GB2312 转为 UTF-8
       static void UTF_8ToGB2312(string &pOut, char *pText, int pLen);//UTF-8 转为 GB2312
};

chinesecode.cpp
void CChineseCode::UTF_8ToUnicode(wchar_t* pOut,char *pText)
{
    char* uchar = (char *)pOut;


    uchar[1] = ((pText[0] & 0x0F) << 4) + ((pText[1] >> 2) & 0x0F);
    uchar[0] = ((pText[1] & 0x03) << 6) + (pText[2] & 0x3F);


    return;
}



大家可以加我QQ讨论技术,开发经验或者是交流下游戏源码


我的QQ是2078306439


数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值