集合覆盖问题的模型与算法

  集合覆盖问题是组合最优化和理论计算机科学中的一类典型问题,它要求以最小代价将某一集合利用其若干子集加以覆盖。在现实生产生活中,集合覆盖问题有着众多应用场合,如物流配送、道路定向、工程调度、设施选址、VLSI 设计、网络安全等。遗憾的是,集合覆盖问题在算法复杂性上属于 NP-困难问题,即它不存在多项式时间精确算法,除非P=NP。因此,近似算法成为求解集合覆盖问题的一个有效途径,其中以 Chvátal 的贪心算法最为简洁。

问题与模型

  基集S={e1, e2, …, en},S1,S2,…,Sm是S的一族子集,若J ⊆ \subseteq {1, 2, …, m},且 ⋃ \bigcup Sj = S,则称{Sj}为S的一个集合覆盖。
  问题::求 S 的一个基数最小的集合覆盖,其中基数定义为集合中元素的数目。
在这里插入图片描述
在这里插入图片描述

近似算法

  借鉴贪心算法来解决集合覆盖问题。贪心算法的思路为:每次选择最大长度的集合Sj来覆盖S中元素,直至S中所有元素都被覆盖。
在这里插入图片描述

LINGO解法

模型IP是一个0-1规划,可以利用LINGO来解决。

案例

  如图所示,四个平面上的圆形区域是同种型号的传感器 S1-S4 的信号覆盖范围,e1~e9 是九个服务客户,问:设置传感器的最佳方案是什么?
在这里插入图片描述
将9个客户视为元素,各传感器的覆盖范围内的元素分别构成集合:
S1={e1,e2,e3,e4,e5}
S2={e3,e4,e5,e6,e7,e8}
S3={e2,e4,e5,e7,e8,e9}
S4={e1,e2,e3,e4,e8,e9}
则传感器的最佳设置方案应为集合S={e1-e9}的一个基数最小的集合覆盖。

近似算法求解

在这里插入图片描述
在这里插入图片描述
则最佳方案为设置传感器S2和S4。

相关问题

  顶点覆盖问题是一个经典的图最优化问题,在算法复杂性上也属于 NP-困难问题。
  设 G = (V, E) 是一个无向图,其中 V, E 分别为顶点集和边集,若存在 C ⊆ \subseteq V ,使 ∀ \forall ij ∈ \in E ,都有 i ∈ \in C 或 j ∈ \in C(即每一条边都至少有一个顶点含于 C 中),则称 C 为 G 的一个顶点覆盖。问题:求 G 的一个基数最小的顶点覆盖。
  顶点覆盖问题可等价地转化为集合覆盖问题:令基集S = E ,S 的一族子集为 S1,S2,…, S|V | ,其中 Sj = { 与顶点 j关联的边 },j = 1,2, …, |V| 。

——————————————————————
参考文献:
[1]王继强.集合覆盖问题的模型与算法[J].计算机工程与应用,2013,49(17):15-17+72.

### 集合覆盖模型在MATLAB中的选址问题实现 #### 定义集合覆盖模型 集合覆盖问题是组合优化领域的一个经典问题,在选址问题中应用广泛。该模型旨在找到最小数量的设施位置,使得这些设施能够服务所有的需求点。 对于选址问题而言,可以将每个潜在站点视为一个子集,而所有可能的需求点构成全集。目标是最小化被选作设施的位置数目,同时确保每一个需求点至少由一个选定的设施所覆盖。 #### 数学表达形式 设 \( n \) 表示候选地点的数量;\( m \) 是客户或需求点的数量。令矩阵 \( A=[a_{ij}] \),其中当第 i 个候选地址 j 可以为客户提供服务时 \( a_{ij}=1 \),否则为 0 。决策向量 \( X=(x_1,x_2,\ldots ,x_n)^T\) ,如果选择了第i个候选地,则对应的分量取值为1,未选择则为0。因此,集合覆盖问题可表示成: \[ Minimize:\sum _{j=1}^{n}{c_jx_j} \] Subject to: \[ \sum _{j:a_{ij}=1}{x_j}\geqslant b_i,~for~all~i=\left\{1,...m\right\}, \] where \( c_j \) represents the cost associated with selecting location j and \( b_i \) is typically set as 1 indicating that each demand point must be covered at least once. #### MATLAB代码实例 下面给出一段简单的MATLAB代码来解决上述描述的集合覆盖问题,采用贪心算法作为启发式求解策略[^2]。 ```matlab function [selectedSites, totalCost] = greedySetCover(costs, coverageMatrix) numLocations = length(costs); numDemands = size(coverageMatrix, 1); selectedSites = []; uncoveredDemandIndices = true(numDemands, 1); % Initially all demands are not covered. while any(uncoveredDemandIndices) bestLocationIndex = -1; maxCoverageCount = -inf; for locIdx = 1:numLocations if ~ismember(locIdx, selectedSites) currentCoverage = sum(coverageMatrix(:,locIdx).*uncoveredDemandIndices); if currentCoverage > maxCoverageCount maxCoverageCount = currentCoverage; bestLocationIndex = locIdx; end end end if bestLocationIndex ~= -1 selectedSites(end+1) = bestLocationIndex; uncoveredDemandIndices = ~(any(coverageMatrix(:,bestLocationIndex), 'rows')); else error('No solution found'); end end totalCost = sum(costs(selectedSites)); end ``` 此函数接收两个参数:`costs`是一个包含各备选项成本的一维数组;`coverageMatrix`是一张二进制矩阵,用来指示哪些候选位置能服务于特定的需求点。返回的结果是已选出的最佳位置列表以及总费用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值