MATLAB 中的非线性回归:将复杂模型拟合到数据

52 篇文章 11 订阅 ¥69.90 ¥99.00
本文通过MATLAB内置的'carbig'数据集,详细介绍了非线性回归分析的全过程,包括数据加载、预处理、变量选择、模型定义、拟合、可视化、预测和模型评估。利用非线性回归模型,如幂律模型,来根据汽车重量预测马力,展示了MATLAB在非线性建模中的应用。
摘要由CSDN通过智能技术生成

线回归是一种强大的技术,用于将复杂模型拟合到不遵循线性关系的数据。MATLAB 提供了强大的工具来执行非线性回归分析,使您能够找到最适合模型的参数并根据拟合模型进行预测。在本教程中,我们将介绍使用 MATLAB 环境中可用的数据集在 MATLAB 中执行非线性回归的过程。

数据集选择

对于本教程,我们将使用名为“carbig”的 MATLAB 内置数据集。“carbig”数据集包含有关各种车型的信息,例如里程、重量和马力等属性。这个数据集将作为一个很好的例子来展示非线性回归。

第 1 步:加载和探索数据集

首先,让我们加载“carbig”数据集并检查其结构和内容。打开 MATLAB 并输入以下命令:

% Load the carbig dataset
load carbig; 

这将在 MATLAB 工作区中加载数据集。花点时间探索变量及其描述。加载的数据集包含以下结构元素:

           Model: [406×36 char]
          Origin: [406×7 char]
             MPG: [406×1 double]
       Cylinders: [406×1 double]
    Displacement: [406×1 double]
      Horsepower: [406×1 double]
          Weight: [406×1 d
好的,我可以为您提供一些基本步骤和代码示例,帮助您使用MATLAB编写BP神经网络进行数据分析和预测。以下是一个简单的示例,帮助您开始: 1. 准备数据集 首先,您需要准备一个数据集,其包含用于训练和测试神经网络的输入和输出数据。您可以使用MATLAB自带的数据集,也可以使用您自己的数据集。在本例,我们将使用MATLAB预装的“auto MPG”数据集。 2. 加载和处理数据 您需要加载数据并将其分成训练和测试集。您还需要对数据进行预处理,例如归一化或标准化。以下是一个示例代码: ```matlab % Load data load carbig X = [Cylinders, Displacement, Horsepower, Weight]; Y = MPG; % Split data into training and testing sets cv = cvpartition(size(X,1),'Holdout',0.3); Xtrain = X(cv.training,:); Ytrain = Y(cv.training,:); Xtest = X(cv.test,:); Ytest = Y(cv.test,:); % Normalize data [Xtrain, mu, sigma] = zscore(Xtrain); Xtest = (Xtest - mu) ./ sigma; ``` 3. 构建神经网络 使用MATLAB的“neural network toolbox”可以轻松地构建神经网络。以下是一个示例代码: ```matlab % Create a feedforward neural network net = feedforwardnet([10, 5]); % Set training parameters net.trainParam.epochs = 100; net.trainParam.lr = 0.01; % Train the network net = train(net, Xtrain', Ytrain'); % Test the network Ypred = net(Xtest'); ``` 4. 评估预测结果 最后,您需要评估神经网络的预测结果。以下是一个示例代码: ```matlab % Calculate mean squared error mse = mean((Ypred - Ytest').^2); % Plot predicted vs. actual values plot(Ytest', Ypred, 'o') xlabel('Actual MPG') ylabel('Predicted MPG') ``` 这是一个简单的例子,帮助您开始使用MATLAB编写BP神经网络进行数据分析和预测。请注意,这只是一个起点,您可以根据需要进行修改和定制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值