IO在计算机中指Input和Output,也就是输入和输入。由于程序和运行是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
比如你打开浏览器,访问新浪首页,浏览器这个程序就需要通过网络IO获取新浪的网页。浏览器首先会发送数据给新浪服务器,告诉它我想要首页的HTML,这个动作是往外面发数据,叫Output,随后新浪服务器把网页发过来,这个动作是从外面接收数据,叫Input。所以,通常,程序完成IO操作会有Input和Output两个数据流。当然也有只用一个的情况,比如,从磁盘读取文件到内存,就只有Input操作,反过来,把数据写到磁盘文件里,就只是一个Output操作。
IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进内存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和新浪服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。
由于CPU和内存的速度远远高于外设的速度,所以,在IO编程中,就存在速度严重不匹配的问题。怎么办呢?同步IO和异步IO。
很明显,使用异步IO来编写程序性能会远远高于同步IO,但是同步IO的缺点是编程模型复杂。想想看,你得知道什么时候通知你"汉堡做好了",而且通知你的方法也各不相同。如果是服务员跑过来找到你,这是回调模式,如果服务员发短信通知你,你就得不停地检查手机,这是轮询模式。总之,异步IO的复杂度远远高于同步IO。
1.文件读写
读写文件时最常见的IO操作。Python内置了读写文件的函数,用法和C是兼容的。
读写文件前,我们必须先了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据,或者把数据写入这个文件对象。
读文件:
要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标识符:
f = open('/Users/michael/test.txt', 'r')
标识符‘r’表示读,这样,我们就成功地打开了一个文件。如果文件打开成功,接下来,调用read()方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str对象表示:
f.read()
最后一步是调用close()方法关闭文件。文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:
f.close()
Python引入了with语句来自动帮我们调用close()方法:
with open('/path/to/file', 'r') as f:
print(f.read())
调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。
如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险。
像open()函数返回的这种有个read()方法的对象,在Python中统称为file-like Object。除了file外,还可以是内存的字节流,网络流,自定义流等等。file-like Object不要求从特定类继承,只要写个read()方法就行。
二进制文件:
前面讲的默认都是读取文本文件,并且是UTF-8编码的文本文件。要读取二进制文件,比如图片、视频等等,用'rb'模式打开文件即可:
字符编码:
要读取非UTF-8编码的文本文件,需要给open()函数传入encoding参数,例如,读取GBK编码的文件:
f = open('/User/gbk.txt','r',encoding = 'gbk')
写文件:
标识符改为'w'和'wb', 'a'表示以追加模式写入.
2.StringIO和BytesIO
StringIO:
很多时候,数据读写不一定是文件,也可以在内存中读写。StringIO顾名思义就是在内存中读写str。要把str写入StringIO,我们需要先创建一个StringIO,然后,像文件一样写入即可:
f = StringIO()
f.write('hello')
getvalue()方法用于获得写入后的str。要读取StringIO,可以用一个str初始化StringIO,然后,像读文件一样读取。
BytesIO:
StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes。
f = BytesIO()
f.write('中文'.encode('utf-8'))
请注意,写入的不是str,而是经过UTF-8编码的bytes。
3.操作文件和目录
如果我们要操作文件、目录,可以在命令行下面输入操作系统提供的各种命令来完成。比如dir、cp等命令。
如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只是简单地调用了操作系统提供的接口函数,Python内置的os模块也可以直接调用操作系统提供的接口函数。
4.序列化
在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:
d = dict(name='Bob', age = 20, score = 80)
可以随时修改变量,比如把name改成'Bill',但是一旦程序结束,变量所占用的内存就会被操作系统全部回收。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'。
我们把变量从内存中变成可存储或运输的过程称之为序列化,在Python中叫picking,在其它语言中也被称之为serialization等。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即uppicking。
Python提供了pickle模块来实现序列化。
pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:
f = open('dump.txt', 'wb')
pickle.dump(d, f)
f.close()
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化对象,也可以直接用pickle.load()方法从一个file-like Object中反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
f = open('dump.txt', 'rb')
d = pickle.load(f)
f.close()
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,而且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据。
JSON:
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,如XML,但是更好的方法就是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web界面中读取,非常方便。
JSON表示的对象就是标准的JavaScript的对象。Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。
把python对象变为json:
json.dumps(d)
dumps方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object.
JSON进阶: