
机器学习实战
文章平均质量分 93
机器学习基础知识,模型算法简介
是Dream呀
全网粉丝10w+,CSDN、稀土掘金人工智能签约作者、专家博主,华为云十佳博主,985人工智能硕士。一万次悲伤依然会有Dream,我一直在最温暖的地方等你!
精通撰文推广有任何需求我都可以帮助到您— —学习交流|商务合作|粉丝福利:https://bbs.csdn.net/topics/614347534
展开
-
强化学习与多任务学习在高级人体活动识别中的融合应用
USC-HAD 数据集是一个广泛用于人类活动识别(HAR)研究的多模态数据集。该数据集定义了 12 种基本日常活动,每种活动由 14 名受试者进行 5 次重复试验,每次试验持续约 24 秒。试验中,受试者的腰部佩戴了一种高精度的 MotionNode 传感器,该传感器集成了三轴加速度计和三轴陀螺仪,能够以 100Hz 的采样频率捕捉人体的运动数据。这种高频率的采样对于捕捉细微的运动变化至关重要,有助于提高活动识别的准确性。原创 2025-02-17 10:59:08 · 36523 阅读 · 1 评论 -
Swin Transformer:深度解析其架构与代码实现
Swin Transformer通过扩展原始Transformer模型的能力,引入了层次化结构和基于窗口偏移的自注意力机制,使其能够有效处理图像数据,并可应用于图像分类、目标检测和分割等任务。Swin Transformer,由微软亚洲研究院孕育的新星,今年在学术界大放异彩,以其独特的魅力在图像分类、图像分割和目标检测等众多领域中斩获了无数荣誉。然而,Swin Transformer的诞生并非一帆风顺。原创 2025-01-27 14:06:11 · 50935 阅读 · 10 评论 -
ASK-HAR:多尺度特征提取的深度学习模型
通过这些实验,我们可以看到ASK-HAR模型在不同的HAR数据集上都展现出了卓越的性能。模型不仅在动态活动识别上表现出色,如“Walking”和“Running”,在静态活动识别上也有很好的效果,尽管对于一些特定的静态活动,如“Standing”,模型的性能还有待提高。此外,模型在处理一些复杂活动,如“ElevatorUp”和“ElevatorDown”,时也面临挑战。原创 2025-01-25 22:27:37 · 54764 阅读 · 10 评论 -
Daily_and_Sports_Activities数据集的详细介绍及训练
该数据集包括19项日常和体育活动的运动传感器数据,每项活动由8名受试者以自己的风格进行5分钟。躯干、手臂和腿部使用五个Xsens-MTx单位。19 项活动中的每一项都由 8 名受试者(4 名女性,4 名男性,年龄在 20 至 30 岁之间)进行,每次 5 分钟。每个受试者的每项活动的总信号持续时间为 5 分钟。受试者被要求以自己的风格进行活动,并且不受活动方式的限制。出于这个原因,某些活动的速度和幅度存在主体间差异。这些活动在比尔肯特大学体育馆的电气和电子工程大楼进行, 在校园内平坦的户外区域。原创 2024-12-09 17:13:09 · 40852 阅读 · 8 评论 -
生成对抗网络模拟缺失数据,辅助PAMAP2数据集仿真实验
PAMAP2(Physical Activity Monitoring 2)数据集是一个全面的身体活动监测数据集,记录了18种不同身体活动,如步行、骑车、踢足球等。这些活动数据由9名受试者在进行活动时佩戴的多个传感器收集得到。此数据集是活动识别、强度估计以及相关算法开发和应用研究的宝贵资源。dataset_dir: 数据集目录WINDOW_SIZE: 滑窗大小OVERLAP_RATE: 滑窗重叠率SPLIT_RATE: 训练集与验证集的比例。原创 2024-11-25 21:39:36 · 23832 阅读 · 33 评论 -
构建 effet.js 人脸识别交互系统的实战之路
face-effet 简称effet.js 是一款人脸样式框架effet.js 是一个轻量级的人脸样式框架,专注于为网页带来生动的面部动画效果。通过简单的API,开发者可以轻松实现眨眼、张嘴、摇头等动态表情,使用户界面更加互动和生动。effet.js 适用于需要增强用户体验的各种应用场景,特别是在前端项目中集成复杂的人脸动态效果。effet.js 是一个基于 facemesh.js 的人脸交互框架,旨在为 Web 应用提供便捷而智能的人脸识别功能,包括登录、打卡和睡眠检测等。原创 2024-10-18 16:56:39 · 25555 阅读 · 0 评论 -
利用机器学习实现客户细分的实战
Hello大家好,我是Dream。 今天来学习一下机器学习实战中的案例:创建客户细分,在此过程中也会补充很多重要的知识点,欢迎大家一起前来探讨学习~在此项目中,我们使用 UCI 机器学习代码库中的数据集。该数据集包含关于来自多种产品类别的各种客户年度消费额(货币单位计价)的数据。该项目的目标之一是准确地描述与批发商进行交易的不同类型的客户之间的差别。这样可以使分销商清晰地了解如何安排送货服务,以便满足每位客户的需求。对于此项目,我们将忽略特征 'Channel' 和 'Region',重点分析记录六个客户原创 2023-12-13 19:27:26 · 4917 阅读 · 106 评论 -
机器学习实战:预测波士顿房价
今天来学习一下机器学习中一个非常经典的案例:预测波士顿房价,在此过程中也会补充很多重要的知识点,欢迎大家一起前来探讨学习~在这个项目中,我们利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试。此项目的数据集来自UCI机器学习知识库。波士顿房屋这些数据于1978年开始统计,共506个数据点,涵盖了麻省波士顿不同郊区房屋14种特征的信息。通过该数据训练后的好的模型可以被用来对房屋做特定预测—尤其是对房屋的价值。对于房地产经纪等人的日常工作来说,这样的预测模型非常有用!原创 2023-12-08 13:40:29 · 4719 阅读 · 124 评论 -
深入了解目标检测技术--从基本概念到算法入门
Hello大家好,我是Dream。 众所周知,目标检测是计算机视觉领域中的重要任务之一,其目的是识别图像或视频中包含的物体实例并将其定位。实现目标检测可以帮助人们在自动驾驶、机器人导航、安防监控等领域中更好地理解和应用图像信息。接下来Dream将带大家一起介绍目标检测的基本概念和常见方法,并详细讲解如何使用深度学习技术实现目标检测。原创 2023-05-09 20:17:04 · 5720 阅读 · 103 评论 -
机器学习实战----使用Python和Scikit-Learn构建简单分类器
今天我们将学习使用Python和Scikit-Learn创建一个简单的文本分类器来识别垃圾邮件。我们将先介绍数据集,并通过可视化和数据预处理方式更好地理解数据集。接着,我们将选择一个算法并使用训练集拟合它。最后,我们将评估该分类器并使用新数据进行预测。原创 2023-12-22 09:11:04 · 7037 阅读 · 21 评论 -
机器学习实战--梯度下降法进行波士顿房价预测
今天来学习一下如何使用机器学习梯度下降法进行波士顿房价预测,欢迎大家一起参与探讨交流原创 2023-02-13 21:18:30 · 5119 阅读 · 6 评论 -
机器学习(九):朴素贝叶斯算法
机器学习(九):朴素贝叶斯算法原创 2022-10-02 13:20:49 · 2182 阅读 · 1 评论 -
机器学习(八):模型选择与调优
机器学习(八):模型选择与调优原创 2022-08-27 15:34:27 · 2217 阅读 · 2 评论 -
零基础学Python--机器学习(四):特征提取
零基础学Python--机器学习(四):特征提取原创 2022-08-17 10:37:07 · 1763 阅读 · 0 评论 -
零基础学Python--机器学习(二):机器学习算法和开发
零基础学Python--机器学习(二):机器学习算法和开发原创 2022-08-11 23:31:55 · 1812 阅读 · 1 评论 -
机器学习(七):sklearn转换器估计器及K-近邻算法
机器学习(七):sklearn转换器估计器及K-近邻算法原创 2022-08-25 19:48:13 · 1494 阅读 · 0 评论 -
零基础学Python--机器学习(三):数据集及特征工程介绍
零基础学Python--机器学习(三):数据集及特征工程介绍原创 2022-08-13 15:25:30 · 1911 阅读 · 2 评论 -
机器学习(六):特征降维和主成分分析法
机器学习(六):特征降维和主成分分析法原创 2022-08-19 17:12:31 · 2275 阅读 · 3 评论 -
零基础学Python--机器学习(五):特征预处理
零基础学Python--机器学习(三):特征预处理原创 2022-08-18 18:28:19 · 1436 阅读 · 0 评论 -
公路堵车概率模型:Nagel-Schreckenberg 模型模拟
公路堵车概率模型:Nagel-Schreckenberg 模型模拟原创 2022-04-18 15:30:20 · 4864 阅读 · 1 评论