[题目描述]
在一个 3×3的网格中,1∼8 这 8 个数字和一个 x
恰好不重不漏地分布在这 3×3 的网格中。
例如:
1 2 3
x 4 6
7 5 8
在游戏过程中,可以把 x
与其上、下、左、右四个方向之一的数字交换(如果存在)。
我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3
4 5 6
7 8 x
例如,示例中图形就可以通过让 x
先后与右、下、右三个方向的数字交换成功得到正确排列。
交换过程如下:
1 2 3 1 2 3 1 2 3 1 2 3
x 4 6 4 x 6 4 5 6 4 5 6
7 5 8 7 5 8 7 x 8 7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。
输入格式
输入占一行,将 3×3 的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3
x 4 6
7 5 8
则输入为:1 2 3 x 4 6 7 5 8
输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出 −1。
输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19
思路描述:
将不同的网格的状态转换成用不同的字符串来表示,用字符串start存储起始网格的状态,用end字符串“12345678x”存储最终符合条件的网格的状态,起始网格的‘x’每移动一次,就会有一个新的网格状态,最终更新到end状态,可以将每个状态看成一个结点,‘x’移动后的状态看成的原来状态的子节点,每条边的权重为1,‘x’移动的次数就转换成了end节点距离start节点的距离,这样问题就转换成了解决start结点距离end结点的最短距离。
ACcode
#include <bits/stdc++.h>
using namespace std;
int bfs(string start)
{
string end = "12345678x"; //符合最终条件的网格状态
queue<string> q; //存放网格状态队列
unordered_map<string,int> d; //key为网格的状态,T为此网格状态离初始状态的距离
q.push(start); //将初始点入队
while(q.size())
{
auto t = q.front(); //取出对头的节点
q.pop();
int distance = d[t]; //distance表示t节点距离start节点的距离
d[start] = 0;
if(t==end) return distance; //若t节点等于end节点,则返回他们的距离
int k= t.find('x'); //返回‘x’的下标
int x= k / 3, y = k % 3; //将下标转换成坐标中的位置
int dx[4]={0,0,1,-1} ,dy[4] = {1,-1,0,0}; //‘x’移动的向量
for(int i=0;i<4;i++)
{
int px=x+dx[i],py=y+dy[i];
if(px>=0 && px <3 && py >=0 && py <3) //移动后的坐标在网格内
{
swap(t[k],t[px * 3 + py]); //交换‘x’与移动后的坐标上的数,将t节点更新
if(!d.count(t)) //若t节点的状态未曾经过,则将t节点放入队列中,且t距初始点的距离+1
{
d[t] = distance + 1;
q.push(t);
}
swap(t[k],t[px * 3 + py]); //将t节点恢复,防止影响‘x’不同方向的其他移动
}
}
}
return -1; //不存在解决方案,返回-1
}
int main()
{
string start;
for(int i=0;i<9;i++)
{
char c;
cin>>c;
start +=c;
}
cout<<bfs(start);
return 0;
}
思考:
1.对于这种无规律且小规模的迭代,可以记录初始状态和结束状态,初始状态到结束状态的所有点即为数,用队列存储初始状态到结束状态的所有点,用哈希表存储每种状态距离初始状态的迭代次数,可以记录初始状态到结束状态的迭代次数。本题的难点在于想到用字符串来表示网格的状态
2.下标转化为二维的坐标有 k/n , k/m,k为下标,n为行数,m为列数
二维坐标转化为下标有 x * m + y,x为横坐标,y为纵坐标,n为列数