[基础算法] 八数码 —BFS

[题目描述]

在一个 3×3的网格中,1∼8 这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3 的网格中。

例如:

1 2 3
x 4 6
7 5 8

在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 x

例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
x 4 6   4 x 6   4 5 6   4 5 6
7 5 8   7 5 8   7 x 8   7 8 x

现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。

输入格式

输入占一行,将 3×3 的初始网格描绘出来。

例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

则输入为:1 2 3 x 4 6 7 5 8

输出格式

输出占一行,包含一个整数,表示最少交换次数。

如果不存在解决方案,则输出 −1。

输入样例:

2 3 4 1 5 x 7 6 8

输出样例

19

思路描述:

将不同的网格的状态转换成用不同的字符串来表示,用字符串start存储起始网格的状态,用end字符串“12345678x”存储最终符合条件的网格的状态,起始网格的‘x’每移动一次,就会有一个新的网格状态,最终更新到end状态,可以将每个状态看成一个结点,‘x’移动后的状态看成的原来状态的子节点,每条边的权重为1,‘x’移动的次数就转换成了end节点距离start节点的距离,这样问题就转换成了解决start结点距离end结点的最短距离。

ACcode

#include <bits/stdc++.h>

using namespace std;

int bfs(string start)
{
    string end = "12345678x";  //符合最终条件的网格状态
    
    queue<string> q;          //存放网格状态队列
    unordered_map<string,int> d;  //key为网格的状态,T为此网格状态离初始状态的距离
    
    q.push(start);            //将初始点入队
    
    while(q.size())          
    {
        auto t = q.front();   //取出对头的节点
        q.pop();
        
        int distance = d[t];  //distance表示t节点距离start节点的距离
        d[start] = 0;
        
        if(t==end) return distance;  //若t节点等于end节点,则返回他们的距离
        int k= t.find('x');         //返回‘x’的下标
        int x= k / 3, y = k % 3;    //将下标转换成坐标中的位置
        int dx[4]={0,0,1,-1} ,dy[4] = {1,-1,0,0}; //‘x’移动的向量
        
        for(int i=0;i<4;i++)
        {
            int px=x+dx[i],py=y+dy[i]; 
            if(px>=0 && px <3 && py >=0 && py <3) //移动后的坐标在网格内
            {
                swap(t[k],t[px * 3 + py]);   //交换‘x’与移动后的坐标上的数,将t节点更新
                
                if(!d.count(t))             //若t节点的状态未曾经过,则将t节点放入队列中,且t距初始点的距离+1
                {
                    d[t] = distance + 1;
                    q.push(t);
                }
                
                swap(t[k],t[px * 3 + py]);  //将t节点恢复,防止影响‘x’不同方向的其他移动
            }
        }
    }
    return -1;  //不存在解决方案,返回-1
}

int main()
{
    string start;
    
    for(int i=0;i<9;i++)
    {
        char c;
        cin>>c;
        start +=c;
    }
    
    cout<<bfs(start);
    
    return 0;
}

思考:

1.对于这种无规律且小规模的迭代,可以记录初始状态和结束状态,初始状态到结束状态的所有点即为数,用队列存储初始状态到结束状态的所有点,用哈希表存储每种状态距离初始状态的迭代次数,可以记录初始状态到结束状态的迭代次数。本题的难点在于想到用字符串来表示网格的状态

2.下标转化为二维的坐标有 k/n , k/m,k为下标,n为行数,m为列数

二维坐标转化为下标有 x * m + y,x为横坐标,y为纵坐标,n为列数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值