Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
The first line of input contains two integer numbers n and k (1 ≤ n, k ≤ 100) — the number of buckets and the length of the garden, respectively.
The second line of input contains n integer numbers ai (1 ≤ ai ≤ 100) — the length of the segment that can be watered by the i-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Print one integer number — the minimum number of hours required to water the garden.
3 6 2 3 5
2
6 7 1 2 3 4 5 6
7
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1.
读题真是硬伤,一开始第二个样例一直搞不懂怎么出来的,后来才明白,选择一个桶后,就只能只用这一个桶了,不能多不能少,找最大因子就可以,遍历一边
code:
#include <iostream>
#include <cstdio>
using namespace std;
int a[120];
int n,k;
int main(){
scanf("%d%d",&n,&k);
int i;
for(i = 0; i < n; i++)
scanf("%d",&a[i]);
int minh = 999999;
for(i = 0; i < n; i++){
if(k%a[i]==0){
if(k/a[i]<minh)
minh = k/a[i];
}
}
printf("%d\n",minh);
return 0;
}