黄金分割数
黄金分割数0.61803... 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。
对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:
1
黄金数 = --------------------------
1
1 + --------------------
1
1 + ---------------
1
1 + ---------
1 + ...
这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。
小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340
(注意尾部的0,不能忽略)
你的任务是:写出精确到小数点后100位精度的黄金分割值。
注意:尾数的四舍五入! 尾数是0也要保留!
显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
黄金分割值 (12分)
利用循环 黄金分割数 = 1/(1+黄金分割数)
直到第一百位数字不在变化
code:
import java.math.*;
import java.util.Scanner;
public class Main{
public static void main(String[]args) {
BigDecimal h = new BigDecimal("0.6");
for(int i = 0; i < 350; i++) {
h = BigDecimal.ONE.divide(BigDecimal.ONE.add(h), 100, BigDecimal.ROUND_HALF_UP);
System.out.println(h);
}
}
}
0.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375