# Knapsack problem FZU - 2214 （01背包变形）

## Knapsack problem

Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).

Input

The first line contains the integer T indicating to the number of test cases.

For each test case, the first line contains the integers n and B.

Following n lines provide the information of each item.

The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.

1 <= number of test cases <= 100

1 <= n <= 500

1 <= B, w[i] <= 1000000000

1 <= v[1]+v[2]+...+v[n] <= 5000

All the inputs are integers.

Output

For each test case, output the maximum value.

Sample Input
1
5 15
12 4
2 2
1 1
4 10
1 2
Sample Output
15

code：

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
int v[1010],w[1010];
int dp[5050];//dp[i]表示价值为i时的最小重量
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,W;
scanf("%d%d",&n,&W);
int V = 0;
for(int i = 0; i < n; i++){
scanf("%d%d",&w[i],&v[i]);
V += v[i];
}
//初始化（很重要！）
memset(dp,INF,sizeof(dp));
dp[0] = 0;
for(int i = 0; i < n; i++){
for(int j = V; j >= v[i]; j--){
dp[j] = min(dp[j],dp[j-v[i]]+w[i]);
}
}
for(int i = V; i >= 0; i--){
if(dp[i] <= W){
printf("%d\n",i);
break;
}
}
}
return 0;
}