GCD of Polynomials (思维+数学)

GCD of Polynomials

Suppose you have two polynomials and . Then polynomial can be uniquely represented in the following way:

This can be done using long division. Here, denotes the degree of polynomial P(x). is called the remainder of division of polynomial by polynomial , it is also denoted as .

Since there is a way to divide polynomials with remainder, we can define Euclid's algorithm of finding the greatest common divisor of two polynomials. The algorithm takes two polynomials . If the polynomial is zero, the result is , otherwise the result is the value the algorithm returns for pair . On each step the degree of the second argument decreases, so the algorithm works in finite number of steps. But how large that number could be? You are to answer this question.

You are given an integer n. You have to build two polynomials with degrees not greater than n, such that their coefficients are integers not exceeding 1 by their absolute value, the leading coefficients (ones with the greatest power of x) are equal to one, and the described Euclid's algorithm performs exactly n steps finding their greatest common divisor. Moreover, the degree of the first polynomial should be greater than the degree of the second. By a step of the algorithm we mean the transition from pair to pair .


Input

You are given a single integer n (1 ≤ n ≤ 150) — the number of steps of the algorithm you need to reach.

Output

Print two polynomials in the following format.

In the first line print a single integer m (0 ≤ m ≤ n) — the degree of the polynomial.

In the second line print m + 1 integers between  - 1 and 1 — the coefficients of the polynomial, from constant to leading.

The degree of the first polynomial should be greater than the degree of the second polynomial, the leading coefficients should be equal to 1. Euclid's algorithm should perform exactly n steps when called using these polynomials.

If there is no answer for the given n, print -1.

If there are multiple answer, print any of them.

Examples
Input
1
Output
1
0 1
0
1
Input
2
Output
2
-1 0 1
1
0 1
Note

In the second example you can print polynomials x2 - 1 and x. The sequence of transitions is

(x2 - 1, x) → (x,  - 1) → ( - 1, 0).

There are two steps in it.

具体实现过程还没看懂,先把正确代码附上希望有明白的大神指点

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 150+10;
int a[maxn][maxn];//a[i][j]表示最高次数为i的多项式的第j次项的系数是几
int n;
void init(){
    memset(a,0,sizeof(a));
    a[0][0] = 1;
    a[1][1] = 1;
    for(int i = 2; i <= n; i++){
        for(int j = 0; j <= i; j++){
            if(j > 0)
                a[i][j] = a[i-1][j-1];
            if(j <= i-2){
                if(a[i][j] + a[i-2][j] > 1)
                    a[i][j] -= a[i-2][j];
                else
                    a[i][j] += a[i-2][j];
            }
        }
    }
}
int main(){
    while(~scanf("%d",&n)){
        init();
        printf("%d\n",n);
        for(int i = 0; i <= n; i++){
            printf("%d ",a[n][i]);
        }
        printf("\n");
        printf("%d\n",n-1);
        for(int i = 0; i < n; i++){
            printf("%d ",a[n-1][i]);
        }
        printf("\n");
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值