算法训练 反置数

问题描述
  一个整数的“反置数”指的是把该整数的每一位数字的顺序颠倒过来所得到的另一个整数。如果一个整数的末尾是以0结尾,那么在它的反置数当中,这些0就被省略掉了。比如说,1245的反置数是5421,而1200的反置数是21。请编写一个程序,输入两个整数,然后计算这两个整数的反置数之和sum,然后再把sum的反置数打印出来。要求:由于在本题中需要多次去计算一个整数的反置数,因此必须把这部分代码抽象为一个函数的形式。
  输入格式:输入只有一行,包括两个整数,中间用空格隔开。
  输出格式:输出只有一行,即相应的结果。
  输入输出样例
样例输入
435 754
样例输出
199

#include <iostream>
using namespace std;
int transfer(int n)
{
    int i=10,k,m=0;
    while(n/i!=0)
    {
        i*=10;
    }
    while(n>0)
    {
        k=n%10;
        n/=10;
        i/=10;
        m+=k*i;
    }
    return m;
}
int main()
{
    int a,b,c,d,e;
    cin>>a>>b;
    c=transfer(a);
    d=transfer(b);
    e=transfer(c+d);
    cout<<e<<endl;
    return 0;
}
神经网络算法优化方法是为了提高神经网络模型的性能和效果而进行的一系列技术手段。以下是几种常见的神经网络算法优化方法: 1. 梯度下降法(Gradient Descent):梯度下降法是一种常用的优化方法,通过计算损失函对模型参的梯度,并沿着梯度的方向更新参,以最小化损失函。 2. 随机梯度下降法(Stochastic Gradient Descent,SGD):SGD是梯度下降法的一种变体,它每次只使用一个样本来计算梯度并更新参,相比于传统的梯度下降法,SGD更加高效。 3. 动量法(Momentum):动量法引入了一个动量项,用于加速收敛过程。它通过累积之前的梯度信息,并在更新参时考虑历史梯度的影响,可以帮助跳出局部最优解。 4. 自适应学习率方法(Adaptive Learning Rate):自适应学习率方法根据模型参的更新情况自动调整学习率的大小。常见的方法有AdaGrad、RMSprop和Adam等。 5. 正则化(Regularization):正则化是一种常用的防止过拟合的方法。常见的正则化方法有L1正则化和L2正则化,它们通过在损失函中引入正则项来限制模型参的大小。 6. 批归一化(Batch Normalization):批归一化是一种用于加速神经网络训练的技术,通过对每个批次的输入进行归一化,可以使得网络更加稳定和收敛更快。 7. Dropout:Dropout是一种常用的正则化方法,它在训练过程中随机将一部分神经元的输出为0,可以减少神经网络的过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值