uva 10299
计算一个给定数的欧拉函数(1~n-1中和n互质的数的个数)
欧拉函数:φ(n)= n (1 - 1/p1)(1 - 1/p2)(1 - 1/p3)…*(1 - 1/pt);这里利用筛法打表计算出50000内的素数,因为数据范围是1000000000内的
#include <iostream>
#include <cstring>
using namespace std;
const int Maxn=50000;
int prime[Maxn];
int oula[Maxn];
bool mark[Maxn];
int num=1;
void init()//素数打表
{
memset(prime,0,sizeof(prime));
memset(mark,false,sizeof(mark));
for(int i=2;i<Maxn;i++)
{
if(!mark[i])
prime[num++]=i;
for(int j=1;j<=num&&prime[j]*i<Maxn;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
break;
}
}
}
int main()
{
init();
int n,cnt;
long long ans;
while(cin>>n&&n)
{
if(n==1)
cout<<0<<endl;
else
{
ans=n;
cnt=0;
memset(oula,0,sizeof(oula));
for(int i=1;n>1&&i<num;i++)
{
if(n%prime[i]==0)
{
oula[cnt++]=prime[i];
while(n%prime[i]==0)
{
n=n/prime[i];
}
}
}
if(n!=1)
oula[cnt++]=n;
for(int i=0;i<cnt;i++)
{
ans=ans/oula[i]*(oula[i]-1);//为防止溢出,先除后乘
}
cout<<ans<<endl;
}
}
return 0;
}
hdu 2824
线性筛法快速求欧拉函数
性质:
1.若p是质数,φ(p)= p-1.
2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质
3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).
在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)
若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;
若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);
void Euler()//欧拉函数打表
{
for(int i=1;i<=N;i++)
phi[i]=i;
for(int i=2;i<=N;i++)
{
if(phi[i]==i)
{
for(int j=i;j<=N;j+=i)
phi[j]-=phi[j]/i;
}
}
}*/
void init()//欧拉函数打表
{
memset(prime,0,sizeof(prime));
memset(mark,false,sizeof(mark));
for(int i=2;i<Maxn;i++)
{
if(!mark[i])
{
prime[num++]=i;
euler[i]=i-1;
}
for(int j=1;j<=num&&prime[j]*i<Maxn;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
euler[i*prime[j]]=euler[i]*prime[j];
break;
}
else
euler[i*prime[j]]=euler[i]*(prime[j]-1);
}
}
}