欧拉函数

uva 10299
计算一个给定数的欧拉函数(1~n-1中和n互质的数的个数)
欧拉函数:φ(n)= n (1 - 1/p1)(1 - 1/p2)(1 - 1/p3)…*(1 - 1/pt);这里利用筛法打表计算出50000内的素数,因为数据范围是1000000000内的

#include <iostream>
#include <cstring>
using namespace std;
const int Maxn=50000;
int prime[Maxn];
int oula[Maxn];
bool mark[Maxn];
int num=1;
void init()//素数打表
{
    memset(prime,0,sizeof(prime));
    memset(mark,false,sizeof(mark));
    for(int i=2;i<Maxn;i++)
    {
        if(!mark[i])
            prime[num++]=i;
        for(int j=1;j<=num&&prime[j]*i<Maxn;j++)
        {
            mark[i*prime[j]]=true;
            if(i%prime[j]==0)
                break;
        }
    }
}
int main()
{
    init();
    int n,cnt;
    long long ans;
    while(cin>>n&&n)
    {
        if(n==1)
        cout<<0<<endl;
        else
        {
        ans=n;
        cnt=0;
        memset(oula,0,sizeof(oula));
        for(int i=1;n>1&&i<num;i++)
        {
            if(n%prime[i]==0)
            {
                oula[cnt++]=prime[i];
                while(n%prime[i]==0)
                {
                    n=n/prime[i];
                }
            }
        }
        if(n!=1)
        oula[cnt++]=n;
        for(int i=0;i<cnt;i++)
        {
            ans=ans/oula[i]*(oula[i]-1);//为防止溢出,先除后乘
        }

        cout<<ans<<endl;
        }
    }
    return 0;
}

hdu 2824
线性筛法快速求欧拉函数
性质:
1.若p是质数,φ(p)= p-1.
2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质
3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).
在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)
若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;
若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);

void Euler()//欧拉函数打表
{
    for(int i=1;i<=N;i++)
    phi[i]=i;
    for(int i=2;i<=N;i++)
    {
        if(phi[i]==i)
        {
            for(int j=i;j<=N;j+=i)
            phi[j]-=phi[j]/i;
        }
    }
}*/
void init()//欧拉函数打表
{
    memset(prime,0,sizeof(prime));
    memset(mark,false,sizeof(mark));
    for(int i=2;i<Maxn;i++)
    {
        if(!mark[i])
        {
            prime[num++]=i;
            euler[i]=i-1;
        }
        for(int j=1;j<=num&&prime[j]*i<Maxn;j++)
        {
            mark[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                euler[i*prime[j]]=euler[i]*prime[j];
                break;
            }
            else
                euler[i*prime[j]]=euler[i]*(prime[j]-1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值