问题描述
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
输入格式
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定
对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
思路:spfa模板题,基于bellman-ford算法的优化
套模板,白皮书P102
#include <iostream>
#include <queue>
#include <vector>
#include <cstdio>
using namespace std;
typedef pair<int,int> P;//first是最短距离,second是顶点编号
const int INF=1e9;
int n,m;
int dis[20005];
struct edge
{
int to,cost;
};
vector<edge> G[20005];
void spfa(int s)
{
priority_queue<P,vector<P>,greater<P> >que;//优先队列,按first值从小到大排列,已更新过的距离最近的顶点先出列
for(int i=1;i<=n;i++)
{
dis[i]=INF;
}
dis[s]=0;
que.push(P(0,s));
while(!que.empty())
{
P p=que.top();
que.pop();
int x=p.second;
if(dis[x]>=p.first)
{
for(int i=0;i<G[x].size();i++)
{
edge e1=G[x][i];
if(dis[e1.to]>dis[x]+e1.cost)
{
dis[e1.to]=dis[x]+e1.cost;
que.push(P(dis[e1.to],e1.to));
// cout<<dis[e1.to]<<endl;
}
}
}
}
}
int main()
{
int u=0,v=0,l=0;
edge e;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>u>>v>>l;
e.to=v;
e.cost=l;
G[u].push_back(e);//将同一顶点的边存在一起
}
spfa(1);
for(int i=2;i<=n;i++)
cout<<dis[i]<<endl;
return 0;
}