问题描述
一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5! = 1*2*3*4*5 = 120,因此5!最右边的那个非0的数字是2。再如:7! = 5040,因此7!最右边的那个非0的数字是4。请编写一个程序,输入一个整数n(n<=100),然后输出n! 最右边的那个非0的数字是多少。
输入格式:输入只有一个整数n。
输出格式:输出只有一个整数,即n! 最右边的那个非0的数字。
输入输出样例
样例输入
6
样例输出
2
阶乘太大,考虑到用数组计算
#include <iostream>
using namespace std;
#define Max 10000
int num[Max];
int main()
{
num[0]=1;// 首位置为1
int n,i,k,c,x;
cin>>n;
for(i=2;i<=n;i++)
{
x=0;
for(k=0;k<Max;k++)//从个位开始依次乘i
{
c=num[k]*i;
num[k]=(c+x)%10;//更新当前位置数值
x=(c+x)/10;//进位
}
}
i=Max-1;
while(num[i]==0)
{
i--;
}
for(k=0;k<Max;k++)
{
if(num[k]!=0)
{
cout<<num[k]<<endl;
break;
}
}
return 0;
}