算法训练 阶乘

本文介绍了一种计算n!最右边非0数字的方法,通过数组存储避免溢出问题,实现对大整数阶乘的高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述
  一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5! = 1*2*3*4*5 = 120,因此5!最右边的那个非0的数字是2。再如:7! = 5040,因此7!最右边的那个非0的数字是4。请编写一个程序,输入一个整数n(n<=100),然后输出n! 最右边的那个非0的数字是多少。
  输入格式:输入只有一个整数n。
  输出格式:输出只有一个整数,即n! 最右边的那个非0的数字。
输入输出样例
样例输入
6
样例输出
2

阶乘太大,考虑到用数组计算

#include <iostream>
using namespace std;
#define Max 10000
int num[Max];
int main()
{
    num[0]=1;// 首位置为1
    int n,i,k,c,x;
    cin>>n;
    for(i=2;i<=n;i++)
    {
        x=0;
        for(k=0;k<Max;k++)//从个位开始依次乘i
        {
            c=num[k]*i;
            num[k]=(c+x)%10;//更新当前位置数值
            x=(c+x)/10;//进位
        }
    }
    i=Max-1;
    while(num[i]==0)
    {
        i--;
    }
    for(k=0;k<Max;k++)
    {
        if(num[k]!=0)
        {
            cout<<num[k]<<endl;
            break;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值