问题描述
首先给出简单加法算式的定义:
如果有一个算式(i)+(i+1)+(i+2),(i>=0),在计算的过程中,没有任何一个数位出现了进位,则称其为简单的加法算式。
例如:i=3时,3+4+5=12,有一个进位,因此3+4+5不是一个简单的加法算式;又如i=112时,112+113+114=339,没有在任意数位上产生进位,故112+113+114是一个简单的加法算式。
问题:给定一个正整数n,问当i大于等于0且小于n时,有多少个算式(i)+(i+1)+(i+2)是简单加法算式。其中n<10000。
输入格式
一个整数,表示n
输出格式
一个整数,表示简单加法算式的个数
样例输入
4
样例输出
3
#include <iostream>
using namespace std;
int main()
{
int n,i,sum,m,a,b,k=1;
cin>>n;
for(i=1;i<n;i++)//已知i=0时是简单加法算式,因此从i=1开始循环,k=1
{
a=b=0;
sum=3*i+3;
m=i;
while(m>0)
{
m=m/10;
a++;
}
while(sum>0)
{
sum/=10;
b++;
}
if(a==b)
k++;
}
cout<<k<<endl;
return 0;
}