自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 Datawhale笔记1 这个夏令营不简单 #AI夏令营 #Datawhale#夏令营

这个过程重复进行多次,每次选择不同的子集作为测试集,最终得到多个模型评估结果,然后对这些结果进行平均,得到模型性能的综合评估。2.数据预处理 (其中要注意的部分:要定义一个空列表drop_cols,用于存储在测试数据集中非空值小于10个的列名)交叉验证(Cross-Validation)是一种统计方法,用于评估并提高模型的预测性能,特别是在样本数量有限的情况下。3.特征工程 (目的是获取更好的训练数据特征 要注意的部分:特征、标签的准备和筛选)

2024-07-04 22:58:52 129

原创 持续同调讲解

是一种拓扑数据分析技术,用于从数据中提取多尺度的形状特征。它主要用于分析点云数据,识别不同尺度下的拓扑特征(如连通分支、空洞和更高维的特征)。

2024-06-04 11:22:48 1412 3

原创 Čech 复形、VR 复形、Alpha 复形的联系与区别

Čech 复形、VR 复形和 Alpha 复形都是用于分析点云数据的拓扑工具。尽管有共同点,这三种复形在构建几何结构的方式上有一些关键区别。

2024-06-03 16:45:37 809

原创 机器学习中的降维算法

1. 主成分分析 (Principal Component Analysis, PCA)原理:PCA通过线性变换将数据投影到一个新的坐标系中,新坐标轴(主成分)按数据方差递减排序。前几个主成分捕获了数据中最大的方差。 应用:数据预处理、可视化、噪声去除。2. 线性判别分析 (Linear Discriminant Analysis, LDA)原理:LDA寻找一个投影,使得不同类别之间的分离度最大,而类别内部的散布最小。适用于有标签数据的降维。 应用:分类任务的数据预处理。3. 独立成分分析

2024-05-29 11:56:36 445

原创 监督学习与非监督学习的联系与区别

数据类型:监督学习需要有标签的数据,而非监督学习处理无标签的数据。目标:监督学习的目标是预测或分类新数据,而非监督学习的目标是发现数据的内在结构或模式。应用场景:监督学习常用于预测和分类任务,而非监督学习常用于数据探索、分群和降维任务。

2024-05-29 11:30:40 451

原创 线性降维方法

使用距离矩阵计算数据点在低维空间中的坐标,通常通过优化一个目标函数来实现,使得低维空间中的距离尽可能接近高维空间中的距离。它通过寻找数据的主成分,即数据在方差最大的方向上的投影,来降低数据的维度。- 对原始数据矩阵进行奇异值分解,得到三个子矩阵 \(U\)、\(\Sigma\) 和 \(V\)。- 截断奇异值矩阵 \(\Sigma\),只保留前 \(k\) 个最大的奇异值及其对应的列向量。- 选择前 \(k\) 个最大的特征值对应的特征向量,作为新的基向量。- 使用截断后的子矩阵重构降维后的数据矩阵。

2024-05-26 10:49:55 216

原创 宇信科技 JAVA一面复盘

Java菜鸟面筋

2023-03-07 20:06:16 939

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除