1. 主成分分析 (Principal Component Analysis, PCA)
- 原理:PCA通过线性变换将数据投影到一个新的坐标系中,新坐标轴(主成分)按数据方差递减排序。前几个主成分捕获了数据中最大的方差。
- 应用:数据预处理、可视化、噪声去除。
2. 线性判别分析 (Linear Discriminant Analysis, LDA)
- 原理:LDA寻找一个投影,使得不同类别之间的分离度最大,而类别内部的散布最小。适用于有标签数据的降维。
- 应用:分类任务的数据预处理。
3. 独立成分分析 (Independent Component Analysis, ICA)
- 原理:ICA将观测数据分解成独立的非高斯信号。目标是找到使得分量彼此统计独立的线性变换。
- 应用:信号处理、图像处理、语音识别。
4. 因子分析 (Factor Analysis, FA)
- 原理:FA假设观测变量是少数未观测潜变量(因子)的线性组合,并包括误差项。它通过最大化观测数据的共同方差来识别这些因子。
- 应用:心理学和社会科学中的潜在变量分析。
5. 非负矩阵分解 (Non-negative Matrix Factorization, NMF)
- 原理:NMF分解一个非负矩阵为两个非负矩阵的乘积。结果矩阵通常代表某种形式的特征组合。
- 应用:图像处理、文本挖掘。
6. 奇异值分解 (Singular Value Decomposition, SVD)
- 原理:SVD将数据矩阵分解为三个矩阵的乘积,其中一个矩阵包含特征的奇异值。通过选择最大的奇异值,可以实现降维。
- 应用:推荐系统、图像压缩。
7. t-分布邻域嵌入 (t-Distributed Stochastic Neighbor Embedding, t-SNE)
- 原理:t-SNE通过最小化高维数据和低维映射之间的概率分布差异,实现数据的低维表示,尤其擅长保留局部结构。
- 应用:数据可视化。
8. 统一流形近似与投影 (Uniform Manifold Approximation and Projection, UMAP)
- 原理:UMAP通过建模高维数据空间中的局部邻域结构,构建低维空间中的相似结构,保留数据的全局和局部特征。
- 应用:数据可视化、聚类。
9. 自编码器 (Autoencoders)
- 原理:自编码器是一种神经网络,通过训练网络将输入压缩到低维表示(编码),然后再重建原始输入(解码)。中间的低维表示即为降维结果。
- 应用:特征学习、异常检测。
10. 随机投影 (Random Projection)
- 原理:随机投影通过将数据投影到随机生成的低维子空间,实现降维。依据约翰逊-林登斯特劳斯引理,随机投影能在一定概率上保留数据的结构。
- 应用:快速降维。