机器学习中的降维算法

1. 主成分分析 (Principal Component Analysis, PCA)

  • 原理:PCA通过线性变换将数据投影到一个新的坐标系中,新坐标轴(主成分)按数据方差递减排序。前几个主成分捕获了数据中最大的方差。
  • 应用:数据预处理、可视化、噪声去除。

2. 线性判别分析 (Linear Discriminant Analysis, LDA)

  • 原理:LDA寻找一个投影,使得不同类别之间的分离度最大,而类别内部的散布最小。适用于有标签数据的降维。
  • 应用:分类任务的数据预处理。

3. 独立成分分析 (Independent Component Analysis, ICA)

  • 原理:ICA将观测数据分解成独立的非高斯信号。目标是找到使得分量彼此统计独立的线性变换。
  • 应用:信号处理、图像处理、语音识别。

4. 因子分析 (Factor Analysis, FA)

  • 原理:FA假设观测变量是少数未观测潜变量(因子)的线性组合,并包括误差项。它通过最大化观测数据的共同方差来识别这些因子。
  • 应用:心理学和社会科学中的潜在变量分析。

5. 非负矩阵分解 (Non-negative Matrix Factorization, NMF)

  • 原理:NMF分解一个非负矩阵为两个非负矩阵的乘积。结果矩阵通常代表某种形式的特征组合。
  • 应用:图像处理、文本挖掘。

6. 奇异值分解 (Singular Value Decomposition, SVD)

  • 原理:SVD将数据矩阵分解为三个矩阵的乘积,其中一个矩阵包含特征的奇异值。通过选择最大的奇异值,可以实现降维。
  • 应用:推荐系统、图像压缩。

7. t-分布邻域嵌入 (t-Distributed Stochastic Neighbor Embedding, t-SNE)

  • 原理:t-SNE通过最小化高维数据和低维映射之间的概率分布差异,实现数据的低维表示,尤其擅长保留局部结构。
  • 应用:数据可视化。

8. 统一流形近似与投影 (Uniform Manifold Approximation and Projection, UMAP)

  • 原理:UMAP通过建模高维数据空间中的局部邻域结构,构建低维空间中的相似结构,保留数据的全局和局部特征。
  • 应用:数据可视化、聚类。

9. 自编码器 (Autoencoders)

  • 原理:自编码器是一种神经网络,通过训练网络将输入压缩到低维表示(编码),然后再重建原始输入(解码)。中间的低维表示即为降维结果。
  • 应用:特征学习、异常检测。

10. 随机投影 (Random Projection)

  • 原理:随机投影通过将数据投影到随机生成的低维子空间,实现降维。依据约翰逊-林登斯特劳斯引理,随机投影能在一定概率上保留数据的结构。
  • 应用:快速降维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值