Persistent Homology(持续同调) 是一种拓扑数据分析技术,用于从数据中提取多尺度的形状特征。它主要用于分析点云数据,识别不同尺度下的拓扑特征(如连通分支、空洞和更高维的特征)。
基本概念
- 单纯复形(Simplicial Complex):由顶点、边、三角形等基本单纯形组成的组合结构。
- 滤波(Filtration):一系列逐步嵌入的单纯复形。
- 同调(Homology):用于识别数据中的拓扑特征,包括连通分支、环和空洞。
- 持续同调(Persistent Homology):追踪拓扑特征在不同尺度下的出现和消失。
持续同调的步骤
- 构建单纯复形:从点云数据生成单纯复形,例如Rips复形或Cech复形。
- 生成滤波序列:根据尺度参数ϵ逐步增加单纯复形的规模。
- 计算同调:在每个尺度下计算同调群,识别拓扑特征。
- 追踪拓扑特征:记录拓扑特征的生成和消亡,以条形图(barcode)或持续图(persistence diagram)的形式展示。
示例代码(Python)
- 安装所需库:
pip install ripser persim
2.示例代码:
import numpy as np
import matplotlib.pyplot as plt
from ripser import ripser
from persim import plot_diagrams
# 生成示例点云数据(环形数据)
n_points = 100
angles = np.linspace(0, 2 * np.pi, n_points)
points = np.c_[np.cos(angles), np.sin(angles)]
# 计算持续同调
diagrams = ripser(points)['dgms']
# 可视化持续图
plot_diagrams(diagrams, show=True)
# 生成条形图
def plot_barcodes(diagrams):
fig, ax = plt.subplots()
for dim, diagram in enumerate(diagrams):
for point in diagram:
ax.plot([point[0], point[1]], [dim, dim], 'b')
ax.set_xlabel("Birth")
ax.set_ylabel("Dimension")
plt.show()
plot_barcodes(diagrams)
解释代码
- 生成示例点云数据:创建一个环形数据集,表示一组均匀分布在单位圆上的点。
- 计算持续同调:使用
ripser
计算点云数据的持续同调。 - 可视化持续图:使用
persim.plot_diagrams
函数绘制持续图,展示拓扑特征的生成和消亡。 - 生成条形图:自定义
plot_barcodes
函数绘制条形图,显示各个拓扑特征的生存时间。
持续同调的应用
- 形状分析:识别和分析数据的几何和拓扑结构。
- 数据降维:通过提取拓扑特征减少数据维度。
- 模式识别:在图像处理和计算机视觉中识别模式和特征。
- 机器学习:用拓扑特征增强特征工程,提高模型性能。