题目
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
题解
class Solution {
public int maxArea(int[] height) {
int i=0,j=height.length-1,res=0;
while(i<j){//注意条件
res=height[i]>height[j]?Math.max(res,(j-i)*height[j--]):Math.max(res,(j-i)*height[i++]);
}
return res;
}
}
思路:
- 第一个遇到的双指针问题。
- 定义两个指针,分别从头和尾出发,取高度较小的边的那一侧向内移,则可以确保留下来的面积有更大的可能,因为如果取较大的边向内移动的话,底肯定会小,且高也肯定会小。移动高度小的边的话有一定几率得到更大的面积。