有限群表示论中的块与特征标
1. 块与特征标的基本概念
在有限群表示论中,我们将群代数分解为不可分解的双边理想的直和,这些理想被称为块。所有不可约的普通特征标和布劳尔特征标都被分配到各个块中。为了进一步研究这些块,我们引入了一些重要的概念。
1.1 块的缺陷
对于有限群 (G),设 (p^a) 是整除 (|G|) 的 (p) 的最高次幂。如果 (B) 是 (G) 的一个 (p -) 块,那么 (B) 的缺陷 (d) 是满足 (p^{a - d}\mid\chi(1)) 对所有 (\chi\in\mathrm{Irr}(B)) 成立的最小非负整数。
- 主块 :包含平凡特征标的块称为主块。主块的缺陷为 (a),其中 (p^a) 是 (G) 的一个西罗 (p -) 子群的阶。主块在很多方面是有限群中最重要的块,它具有最大可能的缺陷,也被称为具有极大缺陷或全缺陷。
- 缺陷为零的块 :如果 (p) 不整除 (|G|),那么每个块的缺陷都为零。此时,普通特征标表和模特征标表相同,分解矩阵(在对行进行排序后)是单位矩阵。每个缺陷为零的块都有一个单一的普通特征标和一个单一的模特征标,其分解矩阵为 ((1))。
定理(布劳尔)表明,如果 (B) 是 (G) 的一个缺陷为零的 (p -) 块,那么 (B) 有一个单一的普通特征标、一个单一的模特征标,且 (B) 的分解矩阵为 ((1))。此外,(B) 作为代数同构于一个维数为 (\chi(1)) 的 (k) 上的矩阵代数,其中 (\chi) 是属于 (B) 的唯一特征标(普通或模特征标
超级会员免费看
订阅专栏 解锁全文
3094

被折叠的 条评论
为什么被折叠?



