一 、朴素贝叶斯分类器

朴素贝叶斯分类器是经典的机器学习算法之一,它是一种基于概率论的分类算法。它的基本思想就是基于概率和误判损失来选择最优的类别标记,常用于垃圾邮件过滤等。
它做出了如下假设:决策问题可以用概率的形式来描述,并且假设所有有关的概率结构均已知。

1、贝叶斯公式

贝叶斯公式是朴素贝叶斯分类器的基础,该公式中最重要的两个因素是先验概率和后验概率,首先来介绍一下先验概率和后验概率的概念:

  • 先验概率:是指根据以往经验和分析得到的概率;
  • 后验概率:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小;

贝叶斯公式为:
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) P(c|x) = \frac{P(c)P(x|c)}{P(x)} P(cx)=P(x)P(c)P(xc)

其中, P ( c ∣ x ) P(c|x) P(cx) 是后验概率; P ( c ) P(c) P(c) 是类“先验”(prior)概率,表达了样本空间中各种样本所占的比例; P ( x ∣ c ) P(x|c) P(xc) 是样本 x x x 相对于类标记 c c c 的类条件概率(class-conditional probability),或称为“似然”(likelihood); P ( x ) P(x) P(x) 是用于归一化的“证据”(evidence)因子。

用英语表示为:
p o s t e r i o r = p r i o r × l i k e l i h o o d e v i d e n c e posterior = \frac{prior \times likelihood}{evidence} posterior=evidenceprior×likelihood

2、朴素贝叶斯分类器

基于贝叶斯公式来估计后验概率 P ( c ∣ x ) P(c|x) P(cx) 的主要困难在于:类条件概率 P ( x ∣ c ) P(x|c) P(xc) 是所有属性上的联合概率,难以从有限的训练样本直接估计得到。为了避开这个难点,朴素贝叶斯分类器采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立,也就是说,假设每个属性独立地对分类结果产生影响。

基于属于条件独立性假设,贝叶斯公式可重写为:
P ( c ∣ x ) = P ( c ) P ( x ∣

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯分类器(Naive Bayes classifier)是一种常用的概率分类方法,它基于贝叶斯理论和特征独立假设。朴素贝叶斯分类器有着简单高效的特点,在文本分类、垃圾邮件过滤、情感分析等领域都有广泛应用。 朴素贝叶斯分类器的基本原理是利用训练集的特征和对应的分类标签构建生成模型,然后根据测试样本的特征,通过计算后验概率来进行分类预测。具体而言,朴素贝叶斯分类器假设特征之间相互独立,基于此假设,可以通过训练集中特征在各个类别下的条件概率来计算样本在不同类别下的后验概率,并选择后验概率最大的类别作为分类结果。 朴素贝叶斯分类器的训练过程包括两个步骤:首先是计算各个类别的先验概率,即每个类别在训练集中的出现频率;然后是计算每个特征在各个类别下的条件概率,即给定一个类别时,特征的条件概率。在得到先验概率和条件概率后,可以通过贝叶斯公式计算后验概率。 朴素贝叶斯分类器的优点在于对小规模数据集具有较好的分类性能,且能够处理多类别分类问题。而其缺点则是对于特征之间的相关性较为敏感,当特征之间存在强相关性时,朴素贝叶斯分类器的性能会下降。 总的来说,朴素贝叶斯分类器一种简单而有效的分类方法,它在许多实际应用中表现出色。其理论基础扎实,实现相对简单,适用于处理小规模数据集的分类问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值