实时水产监测与三维人体姿态预测技术解析
在水产养殖和人工智能设备应用领域,实时监测与姿态预测技术正发挥着越来越重要的作用。下面我们将详细探讨虾类剩余食物检测与体长估计,以及在人工智能边缘设备上进行实时端到端3D人体姿态预测这两项技术。
虾类剩余食物检测与体长估计
数据收集
在这项研究中,虾类养殖于清化省亭嘉县的一个养殖池塘,池塘面积约为3575平方米(65米×55米),四周由塑料防水布环绕,养殖密度为150 - 200只/平方米。虾类每天在早上6点、10点、下午2点和6点投喂四次,投喂量根据虾的重量而定,同时会根据剩余食物的观察情况进行调整。此外,还会对温度、溶解氧、pH值和盐度等参数进行控制和调整。
使用一台水下摄像机(IP HIKvision,传感器尺寸为1/2.8英寸)来获取虾的视频。视频分辨率为1920×1280像素,帧率为30帧/秒,相机系统的焦距为2.8/4毫米,颜色模式为Lux @ (F1.2, AGC ON),0.028 lx @ (F2.0, AGC ON)。通过基于Kurento的WiFi连接开发了一种新的实时视频收集协议,该系统包含PlayerEndPoint和WebRtcEndpoint两个主要组件,并嵌入了RecoderEndPoint组件用于数据压缩和保存,可实现快速连接和随机访问。
在养殖池塘中,使用风扇系统产生循环水流,使虾根据水流方向改变位置,食物均匀分布在池塘周围。长时间录制视频以确保一台摄像机能够代表整个虾塘情况,测试阶段改变多个位置得到的结果相同。
将录制的不同视频提取成大量图像用于训练和测试。随机收集2000张图像,在不同光照变化下进行训练和测试。训练阶段使用LabelImg工具手动将数据标签裁剪为虾和食
订阅专栏 解锁全文
2352

被折叠的 条评论
为什么被折叠?



