学习汇报(论文综述)

农业机器人的前沿应用、科研实践与功能实现体系综述

摘要:
本综述结合近年来农业机器人领域的创新成果,系统阐述了农业机器人在智慧农业全产业链的应用场景,深入剖析科研机构农业机器人的核心功能模块,并从技术实现角度解析功能落地的关键流程。通过综合分析12篇权威文献,为农业机器人技术迭代与产业发展提供多维度参考。

1、农业机器人当前应用方向

(一)精准种植一体化

在作物生产前端,变量施肥机器人通过多光谱成像与土壤养分传感器数据融合,实现田间肥料的差异化精准施用(Chen et al., 2024)。在作物生长中期,基于深度学习的病虫害监测机器人可实时识别叶片病斑,并联动植保无人机进行靶向施药。日本开发的水稻插秧机器人利用视觉导航与柔性机械臂,实现秧苗间距误差小于5mm的高精度移栽(Sato et al., 2023)。
 

(二)智能养殖生态链

在畜牧养殖领域,丹麦研发的智能饲喂机器人集成RFID识别与体况评估系统,可根据每头奶牛的营养需求定制饲料配方(Hansen et al., 2022)。水产养殖方面,中国科学院研制的水下巡检机器人搭载声呐与水质传感器,能自动监测鱼类分布与溶解氧含量,及时调整增氧设备(Wang et al., 2023)。禽类养殖中,清粪机器人通过激光雷达构建三维环境地图,实现养殖场粪便的自主收集与运输。
 

(三)数字化产后处理

果蔬分选领域,基于高光谱成像技术的分选机器人可同时检测内部糖酸度与外部瑕疵,实现农产品品质的无损分级(Liu et al., 2024)。在粮食仓储环节,移动巡检机器人通过温湿度传感器网络与气体检测仪,构建粮堆安全监测模型,及时预警霉变风险。荷兰开发的花卉包装机器人采用柔性抓取技术,可实现不同花型的自适应包装,效率提升40%以上(van der Waal et al., 2021)。

2、科研室农业机器人现有功能

(一)多模态感知融合

科研型农业机器人普遍配备多传感器融合系统,如将激光雷达、深度相机与毫米波雷达组合,实现复杂农田环境的3D建模与动态障碍物识别(Zhang et al., 2023)。部分机器人集成电子鼻与光谱仪,可实时监测作物挥发性气体与营养成分变化,为精准管理提供数据支撑(硕士学位论文《基于多源信息融合的农业机器人感知系统研究》, 2022)。
 

(二)智能决策控制

通过边缘计算与云计算协同架构,科研机器人可实现本地实时决策与云端大数据分析的结合。清华大学研发的果园作业机器人,基于强化学习算法优化作业路径,使单位面积能耗降低25%(硕士学位论文《农业机器人路径规划与作业决策优化研究》, 2023)。部分机器人还具备人机协同功能,支持远程专家实时干预作业流程。
 

(三)自主作业执行

在机械执行层面,科研机器人采用模块化设计理念,可快速更换不同作业工具。例如,浙江大学开发的多功能农业机器人平台,通过快换接口实现播种、除草、采摘等功能的快速切换(Zhao et al., 2022)。在运动控制方面,采用自适应控制算法补偿地形起伏影响,保证机械臂末端执行精度。

3、农业机器人功能实现步骤

(一)需求建模与系统设计

首先通过田野调查与用户访谈建立功能需求模型,运用SysML进行系统架构设计。在机械设计阶段,利用ANSYS进行结构强度分析与运动学仿真;在电气设计方面,采用EPLAN进行电路原理图绘制与布线优化(Bao et al., 2021)。
 

(二)硬件开发与集成

采用模块化硬件设计理念,开发传感器采集模块、驱动控制模块与通信模块。传感器选型需兼顾精度与耐久性,如选用IP67防护等级的工业级传感器。在集成阶段,通过总线协议实现各模块数据交互,采用实时操作系统(RTOS)保证控制实时性(Li et al., 2022)。
 

(三)算法开发与软件实现

在感知算法层面,运用YOLOv5等深度学习模型进行目标识别,采用SLAM算法构建环境地图。决策算法方面,结合遗传算法与模型预测控制(MPC)优化作业策略。软件系统采用ROS机器人操作系统进行任务调度与数据管理,通过Qt开发人机交互界面(硕士学位论文《农业机器人智能控制系统设计与实现》, 2021)。
 

(四)测试验证与优化

建立模拟试验场进行功能测试,运用MATLAB/Simulink进行联合仿真验证。通过正交试验优化控制参数,采用故障树分析(FTA)排查系统隐患。在田间试验阶段,持续收集作业数据,运用机器学习算法进行模型迭代优化(Sun et al., 2023)。
 

(五)产业化适配与推广

针对实际应用场景进行可靠性改进,如增加防尘防水设计与抗电磁干扰措施。通过用户培训与售后服务体系建设,推动技术成果转化。建立产品生命周期管理系统,持续收集用户反馈进行产品迭代(硕士学位论文《农业机器人产业化关键技术研究》, 2022)。

(六)核心技术

感知技术

视觉感知:通过摄像头等设备获取农田环境、作物生长状况、果实位置等图像信息,利用图像处理和计算机视觉算法进行分析,以识别作物的种类、生长阶段、病虫害情况及果实的成熟度等。
 

力觉感知:在机器人进行农事操作时,如采摘、修剪等,力觉传感器可实时感知作用力的大小和方向,使机器人能根据反馈调整力度,避免对作物造成损伤。
 
其他感知:还包括利用激光雷达获取农田地形地貌信息,以及通过温度、湿度、光照、土壤湿度等传感器感知农田环境参数,为机器人的决策和作业提供依据。
 
 

导航与定位技术
 
 

全球卫星导航系统(GNSS):如北斗卫星导航系统等,能为农业机器人提供精确的地理位置信息,使其在大面积农田中准确确定自身位置,按照预设路径进行作业。
 
惯性导航系统(INS):通过加速度计和陀螺仪等传感器测量机器人的加速度和角速度,推算出机器人的位置和姿态变化,常与GNSS结合,提高导航精度和可靠性。
 
视觉导航:利用摄像头拍摄农田环境图像,识别田间的道路、作物行等特征,通过算法计算出机器人的行驶方向和路径,可在卫星信号较弱的环境中发挥重要作用。
 
 

运动控制技术
 
 

驱动系统:为机器人提供动力,使其能够行走、移动和执行各种作业动作。常见的驱动方式有电动驱动、液压驱动和气动驱动等,需根据机器人的负载能力、作业环境和精度要求等选择合适的驱动方式。
 
运动规划:根据作业任务和环境信息,规划出机器人的最优运动路径和动作序列,同时要考虑避开障碍物、避免碰撞作物等,确保作业的高效和安全。
 
 

作业执行技术
 
 

末端执行器技术:是机器人直接用于完成作业任务的部件,如采摘机器人的机械臂和采摘手,需具备高精度、灵活性和适应性,能准确抓取和操作作物。
 
多任务协同技术:一些农业机器人需要同时完成多种作业任务,如播种、施肥、除草等,这就需要协调不同的执行机构和作业模块,使其在时间和空间上合理配合,提高作业效率。
 
 

智能决策与控制系统
 
 

传感器融合技术:将来自不同传感器的信息进行融合处理,以获得更全面、准确的环境和作物信息,为决策提供更可靠的依据。
 
人工智能算法:利用机器学习、深度学习等人工智能算法,对感知到的信息进行分析和处理,使机器人能够自主学习和适应不同的农田环境和作物生长状况,做出合理的决策。
 
控制系统架构:设计合理的控制系统架构,实现对机器人各个部件的有效控制和协调,确保机器人按照预定的目标和任务进行作业。

4、结论

农业机器人正从单一功能设备向智能系统演进,在农业全产业链的应用深度与广度不断拓展。科研机构的技术创新为产业发展提供了核心驱动力,而系统化的功能实现流程是技术落地的关键保障。未来需加强多学科交叉融合,攻克复杂环境适应性、能源续航等技术瓶颈,推动农业机器人产业高质量发展。农业机器人在当前农业生产中已展现出巨大的应用潜力,在多个领域发挥着重要作用。科研室农业机器人也具备多种实用功能,且其功能实现需经过严谨的步骤。随着技术的不断进步,农业机器人将朝着更加智能化、精准化、多功能化的方向发展,进一步推动农业现代化进程。


参考文献:
[1] Chen, J., et al. (2024). Variable - rate Fertilization Robot Based on Multi - sensor Fusion. Biosystems Engineering, 238, 132 - 145.
[2] Sato, H., et al. (2023). High - precision Rice Transplanter Robot with Vision - based Navigation. Journal of Field Robotics, 40(5), 876 - 892.
[3] Hansen, L., et al. (2022). Intelligent Feeding Robot for Dairy Cows: Nutrition Management System. Livestock Science, 261, 104876.
[4] Wang, X., et al. (2023). Underwater Inspection Robot for Aquaculture: System Design and Application. Aquacultural Engineering, 104, 102456.
[5] Liu, X., et al. (2024). Hyperspectral Imaging - based Sorting Robot for Fruit Quality Grading. Postharvest Biology and Technology, 205, 112145.
[6] van der Waal, H., et al. (2021). Adaptive Flower Packaging Robot with Soft Gripping Technology. Journal of Intelligent Manufacturing, 32(6), 2291 - 2303.
[7] Zhang, Y., et al. (2023). Multi - sensor Fusion System for Agricultural Robot Perception. Sensors, 23(15), 7012.
[8] Bao, J., et al. (2021). System Design of Agricultural Robot Based on Model - based Engineering. Agricultural Machinery学报 , 52(9), 1 - 10.
[9] Li, G., et al. (2022). Real - time Control System Design for Agricultural Robot. Control Engineering Practice, 126, 105034.
[10] Sun, W., et al. (2023). Field Test and Optimization of Agricultural Robot Performance. Computers and Electronics in Agriculture, 210, 107845.
[11] 《基于多源信息融合的农业机器人感知系统研究》[D]. 中国农业大学, 2022.
[12] 《农业机器人路径规划与作业决策优化研究》[D]. 清华大学, 2023.
[13] 《农业机器人智能控制系统设计与实现》[D].南京农业大学, 2021.
[14] 《农业机器人产业化关键技术研究》[D]. 上海交通大学, 2022.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值