[BZOJ4919][Lydsy六月份月赛 .C][树上DP][启发式合并]大根堆

用f[i][j]表示第i个节点,最大的为j且满足条件的大根堆的大小
现场写了一个很鬼畜的线段树合并DP数组……一直RE加上时间不够就弃疗了
不过好像是有类似的做法,先挖个坑……

题解很妙啊,考虑链上的情况就是求LIS,求LIS可以用f[i]表示长度为i的子序列的最大是多少然后二分维护,那么放到树上同样可以做,用set维护。子树之间互不影响,直接启发式合并,父节点在子树合并得到的set中找到第一个大于等于它的元素删掉,然后把自己插进去,最后根节点set的大小就是答案

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <set>

using namespace std;

const int N=200010;

int n,cnt,x;
int G[N],a[N];
struct edge{
  int t,nx;
}E[N<<1];

multiset<int> f[N];

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}

inline void rea(int &x){
  char c=nc(); x=0;
  for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}

inline void add(int x,int y){
  E[++cnt].t=y; E[cnt].nx=G[x]; G[x]=cnt;
  E[++cnt].t=x; E[cnt].nx=G[y]; G[y]=cnt;
}

#define V E[i].t

void dfs(int x,int p){
  for(int i=G[x];i;i=E[i].nx)
    if(V!=p){
      dfs(V,x);
      if(f[V].size()>f[x].size()) swap(f[x],f[V]);
      for(set<int>::iterator j=f[V].begin();j!=f[V].end();j++)
    f[x].insert(*j);
      f[V].clear();
    }
  if(f[x].size()>0&&f[x].lower_bound(a[x])!=f[x].end()) f[x].erase(f[x].lower_bound(a[x]));
  f[x].insert(a[x]);
}

int main(){
  rea(n); rea(a[1]); rea(x);
  for(int i=2;i<=n;i++)
    rea(a[i]),rea(x),add(x,i);
  dfs(1,0);
  printf("%d\n",(int)f[1].size());
  return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值