智能数字图像处理之FastRCNN(pytorch)代码解读之spilt_data.py

这是一个脚本生成train.txt等txt文件

1.files_path = "./VOCdevkit/VOC2012/Annotations"-》记住文件路径

2.if not os.path.exists(files_path):
    print("文件夹不存在")
    exit(1)-》检测路径存不存在

3.val_rate = 0.5-》验证集比例

4.files_name = sorted([file.split(".")[0] for file in os.listdir(files_path)])-》拼写并排序并遍历文件路径

5.files_num = len(files_name)-》获取文件长度

6.val_index = random.sample(range(0, files_num), k=int(files_num*val_rate))-》随机采样一部分样本,range(0, files_num)为采样范围,k=int(files_num*val_rate)为采样个数

7.for index, file_name in enumerate(files_name):
    if index in val_index:
        val_files.append(file_name)
    else:
        train_files.append(file_name)-》分割验证集和训练集

8.try:
    train_f = open("train.txt", "x")
    eval_f = open("val.txt", "x")
    train_f.write("\n".join(train_files))
    eval_f.write("\n".join(val_files))-》创建txt文件并放入训练集和验证集
except FileExistsError as e:
    print(e)
    exit(1)

import os
import random


files_path = "./VOCdevkit/VOC2012/Annotations"
if not os.path.exists(files_path):
    print("文件夹不存在")
    exit(1)
val_rate = 0.5

files_name = sorted([file.split(".")[0] for file in os.listdir(files_path)])
files_num = len(files_name)
val_index = random.sample(range(0, files_num), k=int(files_num*val_rate))
train_files = []
val_files = []
for index, file_name in enumerate(files_name):
    if index in val_index:
        val_files.append(file_name)
    else:
        train_files.append(file_name)

try:
    train_f = open("train.txt", "x")
    eval_f = open("val.txt", "x")
    train_f.write("\n".join(train_files))
    eval_f.write("\n".join(val_files))
except FileExistsError as e:
    print(e)
    exit(1)



https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

【课程介绍】       Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 【课程要求】 (1)开发环境:python版本:Python3.7+; torch 版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学员收货:掌握最新科技图像分类关键技术; (5)学员资料:内含完整程序源码和数据集; (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 【课程特色】 阵容强大 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 仅跟前沿 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 实战为先 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 保障效果 项目实战方向包含了学术届和工业届最前沿技术要点 项目包装简历优化 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 【课程思维导图】 【课程实战案例】
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页