题目大意:有n块砖,其中白色是黑色的k倍,求一个消除序列,满足以下条件:
每次消除k+1个砖,其中k块白色,1块黑色,并且这k+1块砖从开始到结束,中间不能路过已经消除过的砖
数据保证有解
这真是一个悲伤的故事,首先我把题想偏了,以为是只能每次取两边,写了一发WA了
然后网上没有题解,就很悲催的去看了波兰文的题解,里面一大堆百度翻译都翻译不出来的波兰语,就是如同什么“好数”“谈笑风声”之类的定义
幸亏我机智的看懂了他说的一部分话,才发现题意想错了,具体做法其实很简单
我们把这个序列的白色看成1,黑色看成-k,这样的话可以求一个前缀和,最近的a[i]相同的两个点之间的距离一定恰好为k+1
那我们就可以弄一个栈,按顺序把前缀和推进去,每当新进来的元素和之前栈中某一个元素权值相同,就把新来的元素连同两个元素之间的元素全部弹出,作为一次消除操作
这样的话倒序的消除序列一定是合法的,我就不证了
时间复杂度O(N)
然后还有一件事,POI官方题解时间复杂度O(NlogK)我也不知道是什么鬼,有兴趣可以去看看 POI2013波兰文题解 第82页
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define N 1000010
using namespace std;
bool la[N<<1];
char s[N];
int a[N];
int q[N],t;
vector<int>ans[N];
int main()
{
int n,k;
scanf("%d%d%s",&n,&k,s+1);
int i,j,x,y;
for(i=1;i<=n;i++)
{
if(s[i]=='c') a[i]=a[i-1]-k;
else a[i]=a[i-1]+1;
}
int cnt=0;
la[n]=true;
for(i=1;i<=n;i++)
{
a[i]+=n;
if(la[a[i]])
{
cnt++;
for(j=t-k+1;j<=t;j++)
{
ans[cnt].push_back(q[j]);
la[a[q[j]]]=false;
}
ans[cnt].push_back(i);
t-=k;
}
else
{
t++;q[t]=i;
la[a[i]]=true;
}
}
for(i=cnt;i>=1;i--)
{
for(j=0;j<ans[i].size();j++)
printf("%d ",ans[i][j]);
puts("");
}
}