题目大意:给一个数串,求出在每段长度为i(1<=i<=n)的情况下,有多少个翻转不同的段,输出最大值、个数,以及所有的段长
根据调和级数,枚举所有的长度,总段数是O(NlogN)级别的
所以判重我们可以用hash和map,这样就可以在O(Nlogn^2)时间内出解
PS:base设成233就WA,2333就过了真是厉害
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define N 200010
using namespace std;
int a[N],h[N],g[N],cf[N];
int base=233,mod=98754321;
int ans[N];
map<int,bool>p;
int geth(int x,int y)
{
x--;
return ((h[y]-(long long)h[x]*cf[y-x]%mod)+mod)%mod;
}
int getg(int x,int y)
{
y++;
return ((g[x]-(long long)g[y]*cf[y-x]%mod)+mod)%mod;
}
int main()
{
int n;
scanf("%d",&n);
int i,j,x,y;
cf[0]=1;
for(i=1;i<=n;i++)
cf[i]=(long long)cf[i-1]*base%mod;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
h[i]=((long long)h[i-1]*base+a[i])%mod;
}
for(i=n;i>=1;i--)
g[i]=((long long)g[i+1]*base+a[i])%mod;
int maxn=0,tot=0;
for(i=1;maxn*i<=n;i++)
{
p.clear();
int now=0;
for(j=1;j+i-1<=n;j+=i)
{
int h1=geth(j,j+i-1),h2=getg(j,j+i-1);
if(!p[h1]||!p[h2])
{
now++;
p[h1]=p[h2]=true;
}
}
if(now>maxn)
{
maxn=now;
tot=1;
ans[1]=i;
}
else if(now==maxn)
{
tot++;
ans[tot]=i;
}
}
printf("%d %d\n%d",maxn,tot,ans[1]);
for(i=2;i<=tot;i++)
printf(" %d",ans[i]);
}