列正交化-施密特正交化方法

a1=[1 1 0 0];
a2=[1 0 1 0];
a3=[-1 0 0 1];
A=[a1',a2',a3];
u=A;
[m,n] = size(u);
y = u;
y(:,1) = y(:,1)/norm(y(:,1));
for k = 2:n   
    y(:,k)=u(:,k);
end
for k = 2:n   
    for j=k:n
        y(:,j)=y(:,j)-y(:,k-1)'*y(:,j)*y(:,k-1);
    end
    p1 = y(:,k)/norm(y(:,k));
    y(:,k) = p1;
  
end

对矩阵A的列向量,按照顺序逐步正交化,采用施密特方法。

疑问1.施密特正交化首选第1列,再选2列,这样正交,如果选择的顺序不一样,得到的结果是不是也不一样?

         回答:是的,可以选择0向量较多的向量作为第1个向量,再选择0向量第2多的向量作为第2个向量,这样计算量小。

        2.用一个矩阵,采用不同的顺序正交化,最后的结果之间有什么关系,只是列向量产生的空间相同吗?

         回答:应该只是列向量产生的列空间相同,还可以使用MATLAB函数Orth,得到列空间相同的正交矩阵。

      

A =

     1     1    -1
     1     0     0
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值