重返天梯-L3-005 垃圾箱分布 (30 分)(dijkstra)

该博客讨论了一道算法题,涉及使用C++实现堆优化的Dijkstra算法来解决垃圾箱最优分布问题。题目要求找到使所有居民点到垃圾箱最短距离最大且满足特定范围的解。博主在实现过程中遇到输出处理的困扰,最终通过动态更新和比较找到了解决方案。博客内容涵盖了算法设计、距离计算和结果优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目分析

重返天梯-L3-005 垃圾箱分布 (30 分)原链接

这道题我板子都写好,结果卡在了结果的输出上hhhhh,输出上还是欠考虑了

题目好像有保留1位小数需要四舍五入,但是其实可以不用管它。如果想要四舍五入,可以用如下公式(round代表上取整):
a / b = r o u n d ( a / b ∗ 10 ) / 10 a/b=round(a/b*10)/10 a/b=round(a/b10)/10


以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。

现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。如果解不唯一,则输出到所有居民点的平均距离最短的那个解。如果这样的解还是不唯一,则输出编号最小的地点。

这里是这道题对于输出的要求,我在这里没有处理到位

  • 首先需要遍历本轮选定的垃圾箱的dijkstra的结果,找出那个最短距离。同时还要判断每个居民点距离垃圾箱是否在规定的范围内。
  • 然后用这个最短距离,去与结果作比较,保留较大值。达到最短距离最长的目的
  • 还要考虑最短距离相等时的情况,这时候保留平均距离最短。由于是从前往后枚举的,保留了编号递增

我一开始写这道题时,把最短距离、编号、平均距离都存了下来,开了很多不同的数据结构,结果还没算出答案。因为结果只要求输出一组,我们只需要保留答案值,在过程中动态更新作比就好了

C++(堆dijkstra)

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e3 + 100, M = 2e4 + 10;
int n, m, k, d;

int h[N], e[M], w[M], ne[M], idx;
int dist[N];
bool st[N];
int ansid = -1;
double ansdis = -1, ansavg = 1e9;

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void dijkstra(int start) {
    memset(dist, 0x3f, sizeof dist);
    memset(st, false, sizeof st);
    dist[start] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 小根堆
    heap.push({0, start});
    
    int mindis = 1e9;
    while (heap.size()) {
        auto t = heap.top();
        heap.pop();
        
        int ver = t.second;
        if (st[ver]) continue;
        st[ver] = true;
        
        for (int i = h[ver]; ~i; i = ne[i]) {
            int j = e[i];
            
            if (dist[j] > dist[ver] + w[i]) {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    // --------------------处理输出-------------------
    double sum = 0;
    for (int i = 1; i <= n; i++) {
        if (dist[i] > d) {
            mindis = -1;
            break;
        }
        mindis = min(mindis, dist[i]);
        sum += 1.0 * dist[i];
        
    }
    if (mindis == -1) return;
    sum /= n;
    
    if (mindis > ansdis) {
        ansid = start % 1000;
        ansdis = mindis;
        ansavg = sum;
    } else if (mindis == ansdis && sum < ansavg) {
        ansid = start % 1000;
        ansdis = mindis;
        ansavg = sum;
    }
    // ------------------------------------------
}

int main() {
    scanf("%d%d%d%d", &n, &m, &k, &d);

    memset(h, -1, sizeof h);
    for (int i = 0; i < k; i++) {
        char str1[10], str2[10];
        int a, b, x;
        scanf("%s %s %d", str1, str2, &x);
        if (str1[0] == 'G') a = 1000 + atoi(str1 + 1);
        else a = atoi(str1);
        if (str2[0] == 'G') b = 1000 + atoi(str2 + 1);
        else b = atoi(str2);
        add(a, b, x), add(b, a, x);
    }
    
    for (int i = 1; i <= m; i++) 
        dijkstra(1000 + i);
    
    if (ansid == -1) puts("No Solution");
    else {
        printf("G%d\n", ansid);
        printf("%.1f %.1f\n", ansdis, ansavg);
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeSlogan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值