numpy中axis参数理解

本文详细解释了在numpy中使用axis参数的意义,特别是当axis为0或1时如何确定是在行上还是列上进行操作。通过实例说明了axis=0表示跨行(down)操作,而axis=1表示跨列(across)操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在学习axis时,其为0或者为1的时候,到底是行还是列。初学的时候感觉好像numpy和python中不一样,0有的时候代表行,有的时候代表列,经常犯错。其实是自己对其理解有误。下面开始来讲解。

numpy当中axis的值表示的是这个多维数组维度的下标,比如有一个二维数组a,a的shape是(5,6),也就是说a有5行6列,axis=0表示的就是[5,6]中的第一维,也就是行,axis=1表示的是[5,6]中的第二个维度,也就是列。

 

简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across)。

axis=0是对行进行操作,axis=1是对列进行操作。

# 创建一个矩阵a,a的维度为2行3列
>>> a = np.array([[1,2,3],[7,8,9]])
>>> print a
[[1 2 3]
 [7 8 9]]


# b表示沿着axis=0(行)这条轴取max,对行进行操作,跨行操作,得到的结果就是把输入数组的'行'给消除了,2行变1行,若是求和,则就是[8 10 12]
>>> b = a.max(axis=0)
>>> print b
[7 8 9]


# c表示沿着axis=1(列)这条轴取max,得到的结果就是把输入数组的'列'给消除了,3列变1列,若是求和,则就是[6 24]
>>> c = a.max(axis=1)
>>> print c
[3 9]

扩展为多维;若有三个维度,则:axis=0代表对维度为0进行操作,axis=1代表对维度为1进行操作,axis=2代表对维度为2进行操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值