视频制作小结

这一次的中级实训,我们小组的视频是我做的 ,所以总结一下这次是怎么做的,以防以后自己再用

最主要的就是先做好PPT,视频,音频都可以在PPT里插好,排好时间,然后我下载了一个破解版的“狸窝PPT转换器”,这个蛮好用的,添加PPT以后就可以把它转换成视频了。

转换后的视频有两百多兆,老师要求在100兆以内,所以又下载了一个“狸窝全能视频转换器”,把视频添加进去,再选择一个能让视频变小的规格输出就可以了。


这次还下载了其他软件,但是没有在最终我的视频中用到,总结一下它们

爱剪辑:是一个视频剪辑的软件,蛮好用的,什么添加视频,音频效果都有,但是你制作好视频之后,输出来的视频的开始和结尾会带有“爱剪辑”的一小段宣传视频,所以如果还要用它的话就只能再下载一个“视频剪切合并器”,这个“视频剪切合并器”蛮小的,也很简洁。

MP3剪切合并大师:是一个免费的MP3剪切合并的软件,简单也很方便


这次还遇到把视频旋转90度的问题,我百度以后下载了“格式工厂”来转,能转出来,但是转出来的效果十分不好,第一个不能铺满整个屏幕,第二是效果失真很多,目前还不知道有什么更好的办法

<think>好的,我现在需要帮助用户了解如何制作吸烟检测的数据集以及数据预处理的方法。首先,我应该按照用户提供的系统级指令来组织回答,确保格式正确,比如使用行内数学表达式和独立公式的格式,同时生成相关问题。另外,需要引用用户提供的参考内容,但注意用户给出的引用[1]和引用[2]似乎与吸烟检测数据集相关,但具体内容可能有限,需要合理使用。 首先,制作吸烟检测的数据集需要考虑数据采集、标注、划分等步骤。数据采集可能需要从公开数据集、网络爬取或者自行拍摄。这里引用[1]提到VOC格式的数据集,包含图像和标注,所以可能需要使用类似的方法。然后标注工具比如LabelImg或CVAT,生成XML文件符合VOC格式,或者转换为其他格式如COCO或YOLO。数据划分部分可能需要将数据分为训练集、验证集和测试集,比例通常是7:2:1或类似。 接下来是数据预处理,包括数据清洗、增强等。引用[2]提到YOLOv8的数据增强方法,比如旋转、翻转、色彩调整、Mosaic增强和Mixup。这些方法可以增加数据多样性,防止过拟合。此外,归一化和尺寸调整也是常见的预处理步骤。 在总结部分,要强调数据集质量的重要性,以及预处理对模型性能的影响。最后生成相关问题,可能需要涵盖数据集来源、标注工具、预处理方法、VOC格式特点、模型训练中的预处理等。 需要注意用户提供的引用中,引用[1]具体提到了VOC格式的应用,引用[2]讨论了YOLOv8的数据增强,因此需要在回答中适当引用这些内容,比如在数据标注部分提到VOC格式,数据增强部分引用YOLOv8的方法。同时,确保使用正确的中文表达,避免技术术语错误,保持结构清晰。 现在检查是否需要使用数学表达式。可能在某些预处理步骤中,比如归一化的公式,可以用行内公式表示,例如归一化公式$x' = \frac{x - \mu}{\sigma}$,但用户的问题可能不涉及太多数学内容,不过如果有机会可以适当加入,比如数据增强中的几何变换可能涉及矩阵操作,但可能不需要深入。或者,在讲解标准化时使用公式。 最后,确保回答结构符合用户要求,分步骤说明制作方法和预处理方法,使用列表和代码块示例,比如展示数据增强的代码片段,可能使用Python和OpenCV或Albumentations库的例子。同时,在末尾生成相关问题,并正确添加引用标识。 现在整理各部分内容,确保每个步骤都有对应的解释,引用正确,格式无误,语言通顺,符合中文表达习惯。</think>### 吸烟检测数据集制作方法 #### 1. **数据采集** - **来源**: - 公开数据集(如引用[^1]提到的VOC格式抽烟数据集) - 网络爬取(需注意版权) - 实际场景拍摄(如监控视频、手持设备录制) - **内容要求**: - 包含不同光照、角度、遮挡条件下的吸烟行为 - 正样本(吸烟动作)与负样本(非吸烟动作)比例均衡 #### 2. **数据标注** - **标注工具**:使用LabelImg、CVAT或VIA标注工具,生成符合VOC格式的XML文件。 - **标注内容**: - 吸烟行为的关键目标(如香烟、手部位置、烟雾) - 标注框(Bounding Box)或关键点(如香烟末端) - **格式转换**:根据模型需求,将VOC格式转换为COCO或YOLO格式(例如YOLOv8要求`txt`标注文件)。 #### 3. **数据划分** - 按比例划分:训练集(70%)、验证集(20%)、测试集(10%) - 确保各类别分布均匀,避免数据泄漏。 --- ### 数据预处理方法总结 #### 1. **数据清洗** - 去除模糊、重复或标注错误的图像。 - 平衡正负样本数量(如过采样或欠采样)。 #### 2. **数据增强(核心步骤)** - **几何变换**:随机旋转($±10^\circ$)、翻转(水平/垂直)、裁剪、缩放。 - **颜色调整**:亮度、对比度、饱和度扰动,添加噪声[^2]。 - **高级增强**(如YOLOv8使用的方法[^2]): - **Mosaic增强**:拼接多张图像提升小目标检测能力。 - **Mixup**:混合两张图像及其标签,增强泛化性。 ```python # 示例:使用Albumentations库实现数据增强 import albumentations as A transform = A.Compose([ A.RandomRotate90(), A.HorizontalFlip(p=0.5), A.RGBShift(r_shift_limit=20, g_shift_limit=20, b_shift_limit=20, p=0.5) ]) ``` #### 3. **归一化与标准化** - 归一化:将像素值缩放到$[0,1]$,例如$x' = x / 255.0$。 - 标准化:按通道计算均值$\mu$和标准差$\sigma$,应用公式$x' = \frac{x - \mu}{\sigma}$。 #### 4. **尺寸调整与填充** - 统一图像尺寸(如$640 \times 640$),避免模型输入维度不匹配。 - 使用填充(Padding)保持图像比例,减少形变。 --- ### 总结 - **数据集质量**:标注准确性和多样性直接影响模型性能[^1]。 - **预处理核心**:数据增强可显著提升模型鲁棒性,尤其是针对复杂场景(如烟雾透明性、小目标检测)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值