//主类
package flink.streaming
import java.util.Properties
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction
import org.apache.flink.streaming.api.CheckpointingMode
object StreamingTest {
def main(args: Array[String]): Unit = {
val kafkaProps = new Properties()
//kafka的一些属性
kafkaProps.setProperty("bootstrap.servers", "bigdata01:9092")
//所在的消费组
kafkaProps.setProperty("group.id", "group2")
//获取当前的执行环境
val evn = StreamExecutionEnvironment.getExecutionEnvironment
//evn.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
//kaf
flink 通过继承RichSinkFunction实现自定义sink,将数据录入数据库
最新推荐文章于 2024-12-11 16:04:16 发布
本文介绍如何在Flink中通过继承RichSinkFunction来创建自定义的数据库sink,将流处理数据高效地写入数据库。

最低0.47元/天 解锁文章
4111

被折叠的 条评论
为什么被折叠?



