在style report中实现地理数据分析

地图是一种图表类型,它显示并总结了以地理地图的形式分布的数据。它具有很多其他图表类型相同的属性,但在有些时候能更加直观的表现数据。

本例是创建能在U.S.地图上显示各个地区的顾客数量的报表,步骤大致分为创建地图和数据分析两步。具体步骤如下:

1. web端,点击“设计报表”,在选择一个报表向导或模板中点击“报表向导:图表向导”。在选择“图标样式”中选择地图。在选择地理列中,“地图“一栏选择“U.S.”,点击“完成”就会看到地图,但是报表中没有数据。具体过程如下图所示:

在style report中实现地理数据分析图1

在style report中实现地理数据分析图2

在style report中实现地理数据分析图3

2. map的左侧点击“数据查询”或鼠标右击选择“数据查询”,在弹出的页面上选择合适的数据源(本例为customers数据源),将“state”数据拖拽到G处,点击G右边的红色问号编辑地理域,在“层次”中选择“state”,点击“应用“。再将“company_name”数据拖拽到“文本”处。最后点击“应用”,就完成对map地理分析的设置了。具体如下图:

在style Report中实现地理数据分析图4

在style Report中实现地理数据分析图5

3. 最后的效果图如下,在map中就可以看到各个地区的顾客数量:

在style report中实现地理数据分析图6

文章来源: http://www.inetsoft.com.cn/customer/KnowledgeBase/create_map_analysis.jsp

[@more@]

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/24212449/viewspace-1037776/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/24212449/viewspace-1037776/

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值