基于神经网络的船舶水尺识别

本文介绍了在大型船舶行业中,通过应用神经网络模型改进传统的水尺计重方法。模型能有效分割水体和字符,包括处理反光海面和字体锈蚀问题,自动过滤无关符号,提高数据准确性,减少人工操作的不便和风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目场景:

项目相关背景:大型船舶,如散货船等,现在仍然使用水尺计重,水尺计重需要读取船舶六面水尺

最近刚刚完成的项目,记录一下😊😊😊

目前大型船舶只能使用水尺计重,需要船舶左右两侧的前、中、后,六个位置的水尺读数。过去长期采用的办法是驾驶小船绕大船一周读取各个位置的水尺,而且必须是港口方和船方都在场,双方目测的水尺数值取平均为最终值。既危险又麻烦,不如交给计算机完成

模型效果

神经网络模型分割出水体和字符
水尺识别效果

对于反光强烈的海面,效果还行

在这里插入图片描述
字体有轻微锈蚀的情况也能应对,而且海面不反光时候,对水体和船体的分割效果明显更好

在这里插入图片描述
模型可以自动过滤无关符号,左边不知道有什么用的符号虽然和水尺颜色相同,但是被模型过滤掉了

在这里插入图片描述
视频的抖动稍微剧烈一点也能应对


技术相关:

商业项目,恕不开源


评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值