水尺识别算法利用监控系统监测水位日益普及,水尺识别算法通常在河流域设置水位监测点,安装水尺和摄像头,利用视频监控人工观测获取水位信息,该方式任务繁重且难以做到实时性。后来,人工智能快速发展,采用深度学习的方法让机器可以代替人们进行水尺读数...

水尺识别算法_图像分类

该算法的主要思想是,首先通过对特征权值的迭代学习以增加有效信息的权重,排除遮挡信息的干扰;通过对图像分类残余值进行不同模型下的回归表示,提出采用更能表现出残余值重尾分布实际情况的逻辑分布模型。实验过程采用实际水尺图像,先通过边缘检测等预处理方式得到当前水位的刻度图像,进一步对该图像附加遮挡进行分类识别以验证实验结果。 实验结果表明,与常用的稀疏回归表示算法相比,该算法在多遮挡情况下的性能较优。该算法的提出对水位监测的自动化和智能化具有重要意义,能够及时反映城市及灌区的供水量等信息,并且能在一定程度上预警暴雨、洪涝等灾害。

水尺识别算法_hg_02

水位监测是水文情况监测的重要组成部分,对水位进行实时监测可以及时反映城市及灌区的供水量等信息,并且能在一定程度上预警暴雨、洪涝等灾害。传统水尺测量通常采用人工定时观测读数的方式,但是这种方式不能保证监测的实时性,并且还存在效率低、工作繁琐等缺点,不利于监测系统的自动化和智能化。

水尺识别算法_图像分类_03

近年来,视频监控的普及为水文情况无人化监测提供了有利条件。因此图像识别技术已经广泛应用于各个场景,而采用图像识别方法应用于水尺刻度值的测量也被越来越多应用在实际监测过程当中。然而,这一方案还存在着诸多问题亟待解决,如当水尺被污渍、落叶等杂物所遮挡时,识别效果就会有明显的减弱,甚至无法识别。 针对这一问题,本文提出了一种基于稀疏表示的视觉法监测水位的遮挡情况下水尺图像特征加权学习识别算法,以解决水尺图像受遮挡的识别问题。该算法的提出对水位监测的自动化和智能化具有重要意义,能够及时反映城市及灌区的供水量等信息,并且能在一定程度上预警暴雨、洪涝等灾害。

水尺识别算法_图像分类_04

在该算法中,我们首先对水尺图像进行预处理,以获得当前水位的刻度图像。然后,我们对图像分类残余值进行不同模型下的回归表示,提出采用更能表现出残余值重尾分布实际情况的逻辑分布模型。在迭代过程中,我们对权值进行自适应学习,以提高后续分类准确性。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.